glucose availability
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 50)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Meyer ◽  
Elsa Germain ◽  
Etienne Maisonneuve

Guanosine penta- or tetraphosphate (known as (p)ppGpp) serves as second messenger to respond to nutrient downshift and other environmental stresses, a phenomenon called stringent response. Accumulation of (p)ppGpp promotes the coordinated inhibition of macromolecule synthesis, as well as the activation of stress response pathways to cope and adapt to harmful conditions. In Escherichia coli, the (p)ppGpp level is tightly regulated by two enzymes, the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified the small protein YtfK as a key regulator of SpoT-mediated activation of stringent response in E. coli. Here, we further characterized the regulation of ytfK. We observed that ytfK is subjected to catabolite repression and is positively regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Importantly, YtfK contributes to SpoT-dependent accumulation of (p)ppGpp and cell survival in response to glucose starvation. Therefore, regulation of ytfK by the cAMP-CRP appears important to adjust (p)ppGpp level and coordinate cellular metabolism in response to glucose availability.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4995
Author(s):  
Anja L. Herrmann ◽  
Bianca J. Kuhn ◽  
Angela Holzer ◽  
Jeroen Krijgsveld ◽  
Karin Hoppe-Seyler ◽  
...  

The iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy response. The present study aims to gain insights into the determinants which govern the switch between senescence and apoptosis in cervical cancer cells. We performed proteome analyses, proliferation studies by live-cell imaging and colony formation assays, senescence and apoptosis assays, and combination treatments of CPX with inhibitors of oxidative phosphorylation (OXPHOS) or glycolysis. We found that CPX downregulates OXPHOS factors and facilitates the induction of apoptosis under limited glucose availability, an effect which is shared by classical OXPHOS inhibitors. Under increased glucose availability, however, CPX-induced apoptosis is prevented and senescence is induced, an activity which is not exerted by classical OXPHOS inhibitors, but by other iron chelators. Moreover, we show that the combination of CPX with glycolysis inhibitors blocks cervical cancer proliferation in a synergistic manner. Collectively, our results reveal that the phenotypic response of cervical cancer cells towards CPX is strongly dependent on glucose availability, link the pro-apoptotic and pro-senescent activities of CPX to its bifunctionality as an OXPHOS inhibitor and iron chelator, respectively, and provide a rationale for combining CPX with glycolysis inhibitors.


2021 ◽  
Author(s):  
Paola K. Párraga Solórzano ◽  
Angela C. Shupe ◽  
Thomas E. Kehl-Fie

Staphylococcus aureus is a versatile opportunistic pathogen whose success is driven by its ability to adapt to diverse environments and host-imposed stresses. Two-component signal transduction systems, such as ArlRS, often mediate these adaptations. Loss of ArlRS or the response regulator ArlR alone impairs the ability of S. aureus to respond to host-imposed manganese starvation and glucose limitation. As sensor histidine kinases and response regulators frequently work as pairs, it has been assumed that ArlS senses and activates ArlR in response to these stimuli. However, recent work suggests that the sensor histidine kinase GraS can also activate ArlR, calling the contribution of ArlS in responding to manganese and glucose availability into question. The current studies reveal that ArlS is necessary to activate ArlR in response to manganese sequestration by the host immune effector calprotectin and glucose limitation. Although the loss of ArlS does not completely eliminate ArlR activity, this response regulator is no longer responsive to manganese or glucose availability in the absence of its cognate histidine kinase. Despite the residual activity of ArlR in the absence of ArlS, ArlR phosphorylation by ArlS is required for S. aureus to resist calprotectin-imposed metal starvation. Cumulatively, these findings contribute to the understanding of S. aureus signaling transduction in response to nutritional immunity and support the previous observation that indicates ArlRS is activated by a common signal derived from host-imposed manganese and glucose limitation. IMPORTANCE The ability of pathogens, including Staphylococcus aureus , to sense and adapt to diverse environments partially relies on two-component systems, such as ArlRS. Recent work revealed that the response regulator ArlR can be cross-activated by the sensor histidine kinase GraS, rendering the role of its cognate partner, ArlS, in response to manganese and glucose limitation uncertain. This study reveals that ArlS is necessary for the activation of ArlR in response to calprotectin and glucose limitation. Although a low level of ArlR activity remains in the absence of ArlS, ArlS phosphotransfer to ArlR is required for S. aureus to overcome calprotectin-induced nutritional stress. Collectively, this study provides fundamental information to understand how ArlRS mediates staphylococcal adaptation during infection.


2021 ◽  
Author(s):  
Erika Castillo ◽  
Ebony Mocanu ◽  
Gӧkhan Uruk ◽  
Raymond A. Swanson

2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Himanish Basu ◽  
Gulcin Pekkurnaz ◽  
Jill Falk ◽  
Wei Wei ◽  
Morven Chin ◽  
...  

Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.


2021 ◽  
Vol 22 (14) ◽  
pp. 7532
Author(s):  
Tyrone L. R. Humphries ◽  
Kunyu Shen ◽  
Abishek Iyer ◽  
David W. Johnson ◽  
Glenda C. Gobe ◽  
...  

Coagulopathies common to patients with diabetes and chronic kidney disease (CKD) are not fully understood. Fibrin deposits in the kidney suggest the local presence of clotting factors including tissue factor (TF). In this study, we investigated the effect of glucose availability on the synthesis of TF by cultured human kidney tubular epithelial cells (HTECs) in response to activation of protease-activated receptor 2 (PAR2). PAR2 activation by peptide 2f-LIGRLO-NH2 (2F, 2 µM) enhanced the synthesis and secretion of active TF (~45 kDa) which was blocked by a PAR2 antagonist (I-191). Treatment with 2F also significantly increased the consumption of glucose from the cell medium and lactate secretion. Culturing HTECs in 25 mM glucose enhanced TF synthesis and secretion over 5 mM glucose, while addition of 5 mM 2-deoxyglucose (2DOG) significantly decreased TF synthesis and reduced its molecular weight (~40 kDa). Blocking glycosylation with tunicamycin also reduced 2F-induced TF synthesis while reducing its molecular weight (~36 kDa). In conclusion, PAR2-induced TF synthesis in HTECs is enhanced by culture in high concentrations of glucose and suppressed by inhibiting either PAR2 activation (I-191), glycolysis (2DOG) or glycosylation (tunicamycin). These results may help explain how elevated concentrations of glucose promote clotting abnormities in diabetic kidney disease. The application of PAR2 antagonists to treat CKD should be investigated further.


Author(s):  
Juulia H. Lautaoja ◽  
Thomas O'Connell ◽  
Sakari Mäntyselkä ◽  
Juuli Peräkylä ◽  
Heikki Kainulainen ◽  
...  

The application of exercise-like electrical pulse simulation (EL-EPS) has become a widely used exercise mimetic in vitro. EL-EPS produces similar physiological responses as in vivo exercise, while less is known about the detailed metabolic effects. Routinely the C2C12 myotubes are cultured in high glucose medium (4.5 g/l), which may alter EL-EPS responses. In this study, we evaluate the metabolic effects of EL-EPS under the high and low glucose (1.0 g/l) conditions to understand how substrate availability affects the myotube response to EL-EPS.The C2C12 myotube, media and cell-free media metabolites were analyzed using untargeted nuclear magnetic resonance (NMR)-based metabolomics. Further, translational and metabolic changes and possible exerkine effects were analyzed. EL-EPS enhanced substrate utilization as well as production and secretion of lactate, acetate, 3-hydroxybutyrate and branched chain fatty acids (BCFAs). The increase in BCFAs correlated with branched chain amino acids (BCAAs) and BCFAs were strongly decreased when myotubes were cultured without BCAAs suggesting the action of acyl-CoA thioesterases on BCAA catabolites. Notably, not all EL-EPS responses were augmented by high glucose because EL-EPS increased phosphorylated c-Jun N-terminal kinase and interleukin-6 secretion independent of glucose availability. Administration of acetate and EL-EPS conditioned media on HepG2 hepatocytes had no adverse effects on lipolysis or triacylglycerol content.Our results demonstrate that unlike in cell-free media, the C2C12 myotube and media metabolites were affected by EL-EPS, particularly under high glucose condition suggesting that media composition should be considered in future EL-EPS studies. Further, acetate and BCFAs were identified as putative exerkines warranting more research.


Endocrinology ◽  
2021 ◽  
Author(s):  
Marimo Sato ◽  
Shiori Minabe ◽  
Takahiro Sakono ◽  
Fumie Magata ◽  
Sho Nakamura ◽  
...  

Abstract Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 h induced mRNA expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 h significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine β-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.


2021 ◽  
Author(s):  
Xueyi Xue ◽  
Ya‐Chi Yu ◽  
Yue Wu ◽  
Huiling Xue ◽  
Li‐Qing Chen

Sign in / Sign up

Export Citation Format

Share Document