scholarly journals Chronic Progressive Deficits in Neuron Size, Density and Number in the Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus

2011 ◽  
pp. no-no ◽  
Author(s):  
Sandor Dosa ◽  
Karla Castellanos ◽  
Sarolta Bacsa ◽  
Eva Gagyi ◽  
S. Krisztian Kovacs ◽  
...  
2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Shaohui Wang ◽  
Alexander V. Ljubimov ◽  
Ling Jin ◽  
Klaus Pfeffer ◽  
Mitchell Kronenberg ◽  
...  

ABSTRACTRecently, we reported that the herpesvirus entry mediator (HVEM; also called TNFRSF14 or CD270) is upregulated by the latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1) and that the absence of HVEM affects latency reactivation but not primary infection in ocularly infected mice. gD has been shown to bind to HVEM. LIGHT (TNFSF14), CD160, and BTLA (B- and T-lymphocyte attenuator) also interact with HVEM and can interfere with HSV gD binding. It was not known if LIGHT, CD160, or BTLA affected the level of latency reactivation in the trigeminal ganglia (TG) of latently infected mice. To address this issue, we ocularly infected LIGHT−/−, CD160−/−, and BTLA−/−mice with LAT(+) and LAT(−) viruses, using similarly infected wild-type (WT) and HVEM−/−mice as controls. The amount of latency, as determined by the levels of gB DNA in the TG of the LIGHT−/−, CD160−/−, and BTLA−/−mice infected with either LAT(+) or LAT(−) viruses, was lower than that in WT mice infected with LAT(+) virus and was similar in WT mice infected with LAT(−) virus. The levels of LAT RNA in HVEM−/−, LIGHT−/−, CD160−/−, and BTLA−/−mice infected with LAT(+) virus were similar and were lower than the levels of LAT RNA in WT mice. However, LIGHT−/−, CD160−/−, and BTLA−/−mice, independent of the presence of LAT, had levels of reactivation similar to those of WT mice infected with LAT(+) virus. Faster reactivation correlated with the upregulation of HVEM transcript. The LIGHT−/−, CD160−/−, and BTLA−/−mice had higher levels of HVEM expression, and this, along with the absence of BTLA, LIGHT, or CD160, may contribute to faster reactivation, while the absence of each molecule, independent of LAT, may have contributed to lower latency. This study suggests that, in the absence of competition with gD for binding to HVEM, LAT RNA is important for WT levels of latency but not for WT levels of reactivation.IMPORTANCEThe effects of BTLA, LIGHT, and CD160 on latency reactivation are not known. We show here that in BTLA, LIGHT, or CD160 null mice, latency is reduced; however, HVEM expression is upregulated compared to that of WT mice, and this upregulation is associated with higher reactivation that is independent of LAT but dependent on gD expression. Thus, one of the mechanisms by which BTLA, LIGHT, and CD160 null mice enhance reactivation appears to be the increased expression of HVEM in the presence of gD. Thus, our results suggest that blockade of HVEM-LIGHT-BTLA-CD160 contributes to reduced HSV-1 latency and reactivation.


2015 ◽  
Vol 89 (10) ◽  
pp. 5747-5750 ◽  
Author(s):  
Susanne Himmelein ◽  
Anja Lindemann ◽  
Inga Sinicina ◽  
Michael Strupp ◽  
Thomas Brandt ◽  
...  

Herpes simplex virus 1 (HSV-1) can establish lifelong latency in human trigeminal ganglia. Latently infected ganglia contain CD8+T cells, which secrete granzyme B and are thus capable of inducing neuronal apoptosis. Using immunohistochemistry and single-cell reverse transcription-quantitative PCR (RT-qPCR), higher frequency and transcript levels of caspase-3 were found in HSV-1-negative compared to HSV-1-positive ganglia and neurons, respectively. No terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay-positive neurons were detected. The infiltrating T cells do not induce apoptosis in latently infected neurons.


2006 ◽  
Vol 80 (13) ◽  
pp. 6568-6574 ◽  
Author(s):  
Anthony Griffiths ◽  
Malen A. Link ◽  
Caroline L. Furness ◽  
Donald M. Coen

ABSTRACT Many acyclovir-resistant herpes simplex virus isolates from patients contain insertions or deletions in homopolymeric sequences in the thymidine kinase (TK) gene (tk). Viruses that have one (G8) or two (G9) base insertions in a run of seven G's (G string) synthesize low levels of active TK (TK-low phenotype), evidently via ribosomal frameshifting. These levels of TK can suffice to permit reactivation from latently infected mouse ganglia, but in a majority of ganglia, especially with the G9 virus, reactivation of virus that has reverted to the TK-positive phenotype predominates. To help address the relative contributions of translational mechanisms and reversion in reactivation, we generated viruses with a base either inserted or deleted just downstream of the G string. Both of these viruses had a TK-low phenotype similar to that of the G8 and G9 viruses but with less reversion. Both of these viruses reactivated from latently infected trigeminal ganglia, albeit inefficiently, and most viruses that reactivated had a uniformly TK-low phenotype. We also generated viruses that have one insertion in a run of six C's or one deletion in a run of five C's. These viruses lack measurable TK activity. However, they reactivated from latently infected ganglia, albeit inefficiently, with the reactivating viruses having reverted to the wild-type TK phenotype. Therefore, for G-string mutants, levels of active TK as low as 0.25% generated by translational mechanisms can suffice for reactivation, but reversion can also contribute. For viruses that lack TK activity due to mutations on other homopolymeric sequences, reactivation can occur via reversion.


2008 ◽  
Vol 83 (5) ◽  
pp. 2246-2254 ◽  
Author(s):  
Kevin R. Mott ◽  
Catherine J. Bresee ◽  
Sariah J. Allen ◽  
Lbachir BenMohamed ◽  
Steven L. Wechsler ◽  
...  

ABSTRACT A hallmark of infection with herpes simplex virus type 1 (HSV-1) is the establishment of latency in ganglia of the infected individual. During the life of the latently infected individual, the virus can occasionally reactivate, travel back to the eye, and cause recurrent disease. Indeed, a major cause of corneal scarring (CS) is the scarring induced by HSV-1 following reactivation from latency. In this study, we evaluated the relationship between the amount of CS and the level of the HSV-1 latency-associated transcript (LAT) in trigeminal ganglia (TG) of latently infected mice. Our results suggested that the amount of CS was not related to the amount of virus replication following primary ocular HSV-1 infection, since replication in the eyes was similar in mice that did not develop CS, mice that developed CS in just one eye, and mice that developed CS in both eyes. In contrast, mice with no CS had significantly less LAT, and thus presumably less latency, in their TG than mice that had CS in both eyes. Higher CS also correlated with higher levels of mRNAs for PD-1, CD4, CD8, F4/80, interleukin-4, gamma interferon, granzyme A, and granzyme B in both cornea and TG. These results suggest that (i) the immunopathology induced by HSV-1 infection does not correlate with primary virus replication in the eye; (ii) increased CS appears to correlate with increased latency in the TG, although the possible cause-and-effect relationship is not known; and (iii) increased latency in mouse TG correlates with higher levels of PD-1 mRNA, suggesting exhaustion of CD8+ T cells.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Jessica R. Doll ◽  
Richard L. Thompson ◽  
Nancy M. Sawtell

ABSTRACTHerpes simplex virus (HSV) establishes latency in neurons of the peripheral and central nervous systems (CNS). Evidence is mounting that HSV latency and reactivation in the nervous system has the potential to promote neurodegenerative processes. Understanding how this occurs is an important human health goal. In the mouse model,in vivoviral reactivation in the peripheral nervous system, triggered by hyperthermic stress, has been well characterized with respect to frequency and cell type. However, characterization ofin vivoreactivation in the CNS is extremely limited. Further, it remains unclear whether virus reactivated in the peripheral nervous system is transported to the CNS in an infectious form, how often this occurs, and what parameters underlie the efficiency and outcomes of this process. In this study, reactivation was quantified in the trigeminal ganglia (TG) and the brain stem from the same latently infected animal using direct assays of equivalent sensitivity. Reactivation was detected more frequently in the TG than in the brain stem and, in all but one case, the amount of virus recovered was greater in the TG than that detected in the brain stem. Viral protein positive neurons were observed in the TG, but a cellular source for reactivation in the brain stem was not identified, despite serially sectioning and examining the entire tissue (0/6 brain stems). These findings suggest that infectious virus detected in the brain stem is primarily the result of transport of reactivated virus from the TG into the brain stem.IMPORTANCELatent herpes simplex virus (HSV) DNA has been detected in the central nervous systems (CNS) of humans postmortem, and infection with HSV has been correlated with the development of neurodegenerative diseases. However, whether HSV can directly reactivate in the CNS and/or infectious virus can be transported to the CNS following reactivation in peripheral ganglia has been unclear. In this study, infectious virus was recovered from both the trigeminal ganglia and the brain stem of latently infected mice following a reactivation stimulus, but a higher frequency of reactivation and increased titers of infectious virus were recovered from the trigeminal ganglia. Viral proteins were detected in neurons of the trigeminal ganglia, but a cellular source of infectious virus could not be identified in the brain stem. These results suggest that infectious virus is transported from the ganglia to the CNS following reactivation but do not exclude the potential for direct reactivation in the CNS.


Sign in / Sign up

Export Citation Format

Share Document