Effect of streptozotocin-diabetes on rat liver asialoglycoprotein receptor turnover: in vivo degradation and in vitro biosynthesis

1990 ◽  
Vol 69 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Elisabeth Couderc ◽  
Martine Appel ◽  
Abdelhamid Slama ◽  
Jeanne Feger
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yang Li ◽  
Chao Feng Yang ◽  
Hui Zuo ◽  
Ao Li ◽  
Sushant Kumar Das ◽  
...  

Background. The decrease in asialoglycoprotein receptor (ASGPR) levels is observed in patients with chronic liver disease and liver tumor. The aim of our study was to develop ASGPR-targeted superparamagnetic perfluorooctylbromide nanoparticles (M-PFONP) and wonder whether this composite agent could target buffalo rat liver (BRL) cells in vitro and could improve R2 ∗ value of the rat liver parenchyma after its injection in vivo. Methods. GalPLL, a ligand of ASGPR, was synthesized by reductive amination. ASGPR-targeted M-PFOBNP was prepared by a film hydration method coupled with sonication. Several analytical methods were used to investigate the characterization and safety of the contrast agent in vitro. The in vivo MR T2 ∗ mapping was performed to evaluate the enhancement effect in rat liver. Results. The optimum concentration of Fe3O4 nanoparticles inclusion in GalPLL/M-PFOBNP was about 52.79 µg/mL, and the mean size was 285.6 ± 4.6 nm. The specificity of GalPLL/M-PFOBNP for ASGPR was confirmed by incubation experiment with fluorescence microscopy. The methyl thiazolyl tetrazolium (MTT) test showed that there was no significant difference in the optical density (OD) of cells incubated with all GalPLL/M-PFOBNP concentrations. Compared with M-PFOBNP, the increase in R2 ∗ value of the rat liver parenchyma after GalPLL/M-PFOBNP injection was higher. Conclusions. GalPLL/M-PFOBNP may potentially serve as a liver-targeted contrast agent for MR receptor imaging.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
F Moriconi ◽  
H Christiansen ◽  
H Christiansen ◽  
N Sheikh ◽  
J Dudas ◽  
...  

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


2021 ◽  
Vol 27 ◽  
pp. 102369
Author(s):  
Shijun Lu ◽  
Xiaochen Tang ◽  
Qingqing Lu ◽  
Jiwei Huang ◽  
Xinran You ◽  
...  

1975 ◽  
Vol 24 (4) ◽  
pp. 517-521 ◽  
Author(s):  
Gerard J. Mulder ◽  
Arnold H.E. Pilon
Keyword(s):  

1986 ◽  
Vol 6 (6) ◽  
pp. 527-534
Author(s):  
Colin Watts

cDNA clones for the major rat liver asialoglycoprotein (ASGP) receptor were isolated from a phage λgtl 1 library using synthetic oligonucleotide probes corresponding to two regions of the protein sequence. The longest clone obtained encoded all but the first 11 codons of the receptor. The cDNA was completed with synthetic oligonucleotides and was used to direct the synthesis of mRNA for the receptor in vitro. Subsequent translation in a wheat germ lysate produced authentic ASGP receptor which assembled correctly into microsomal membranes.


Sign in / Sign up

Export Citation Format

Share Document