scholarly journals microRNA‐148a‐3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head

2020 ◽  
Vol 24 (19) ◽  
pp. 11512-11523
Author(s):  
Shengxiang Huang ◽  
Yaochun Li ◽  
Panfeng Wu ◽  
Yongbing Xiao ◽  
Ningbo Duan ◽  
...  
2020 ◽  
Author(s):  
Shanhong Fang ◽  
Tianmin He ◽  
Jiarun Jiang ◽  
Yongfeng Li ◽  
Heling Huang ◽  
...  

Abstract Background: Osteonecrosis of femoral head (ONFH) is a common ischemic disease that induces femoral head necrosis. The role of exosomes and miRNA in ONFH has been elucidated, however, whether miRNA-modified exosomes improve the therapy of ONFH is not clear.Methods: We screened ONFH-related miRNAs by RNA sequencing in plasma exosomes of ONFH patients and healthy donors. The key miRNA was overexpressed in bone marrow mesenchymal stem cells (BMSC) exosomes. The regulatory functions of miRNA-modified BMSC exosomes in vascular endothelial cells were illustrated through angiogenesis assay and scratch assay.Results: We identified 9 differently expressed miRNAs (DEmiRNAs) in plasma exosomes between ONFH and healthy groups, with 6 up-regulated and 3 down-regulated miRNAs. Function and pathway analysis revealed DEmiRNAs were primarily involved in angiogenesis, cell migration, focal adhesion. Moreover, miR-150-5p was declined in ONFH exosomes and regulated multiple angiogenesis-related pathways. The miR-150-5p-overexpressed BMSC exosomes were successfully obtained and transported miR-150-5p to endothelial cells. Moreover, the miR-150-5p-modified BMSC exosomes promoted the angiogenesis and migration of endothelial cells.Conclusion: Our results elucidate the exosomal miRNA expression profiles in ONFH, and miR-150-5p-modified BMSC exosomes protect against ONFH by promoting angiogenesis, suggesting a new molecular knowledge for the clinical application of ONFH.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jia Li ◽  
Zhaogang Ge ◽  
Wenchen Ji ◽  
Na Yuan ◽  
Kunzheng Wang

Small extracellular vesicles (sEVs) derived from bone marrow mesenchymal stem cells (BMMSCs) from individuals with steroid-induced osteonecrosis of the femoral head (ONFH) have not been studied. The objective of the present study was to compare the proosteogenic and proangiogenic effects of sEVs derived from BMMSCs from rats with steroid-induced ONFH (oBMMSCs-sEVs) and sEVs derived from BMMSCs from normal rats (nBMMSCs-sEVs). BMMSCs were isolated from steroid-induced ONFH rats and healthy rats. sEVs were isolated and characterized by Western blotting analysis of exosomal surface biomarkers and by transmission electron microscopy. The impacts of nBMMSCs-sEVs and oBMMSCs-sEVs on the proliferation and osteogenic differentiation of BMMSCs were determined via cell proliferation assay, alizarin red staining, and alkaline phosphatase activity assay. Enzyme-linked immunosorbent assay and tube formation assay were conducted to investigate the effect of nBMMSCs-sEVs and oBMMSCs-sEVs on the angiogenic potential of human umbilical vein endothelial cells (HUVECs). The expression of relevant genes was detected by quantitative real-time polymerase chain reaction analysis, and the expression of β-catenin was detected by immunofluorescence. Both nBMMSCs-sEVs and oBMMSCs-sEVs promoted proliferation, osteogenic differentiation, and β-catenin expression of BMMSCs and enhanced angiogenesis of HUVECs. However, compared with nBMMSCs-sEVs, oBMMSCs-sEVs exhibited attenuated effects. Our findings indicated that the proosteogenic and proangiogenic effects of sEVs were partially attenuated in steroid-induced ONFH. Therefore, this study might offer guidance for the selection of source cells for sEV therapy in the future.


Sign in / Sign up

Export Citation Format

Share Document