Wear debris released by hip prosthesis analysed by microcomputed tomography

2020 ◽  
Author(s):  
D. CHAPPARD ◽  
L. RONY ◽  
F. DUCELLIER ◽  
V. STEIGER ◽  
L. HUBERT
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Tim W. Rattay ◽  
Torsten Kluba ◽  
Ludger Schöls

AbstractA 53-year old male with a history of progressive visual impairment, hearing loss, peripheral neuropathy, poorly controlled diabetes mellitus, cardiomyopathy, and weight loss was referred to the rare disease center due to the suspicion of mitochondrial cytopathy. In line with mitochondrial dysfunction, lactate in CSF was increased. Genetic testing by whole-exome sequencing and mitochondrial DNA did not reveal a likely cause. The case remained unsolved until he developed pain in his right hip, where he had received total hip arthroplasty 12 years earlier. An orthopedic evaluation revealed substantial shrinkage of the head of the hip prosthesis. Due to metal-on-metal wear, debris chromium and cobalt levels in serum were massively increased and significantly improved with multisystemic impairment after exchanging the defective implant.


1998 ◽  
Vol 119 (1) ◽  
pp. 89-93 ◽  
Author(s):  
M.J. Day ◽  
S.J. Butterworth ◽  
M.R. Palmer ◽  
C.P. Case

1999 ◽  
Author(s):  
Donna M. Meyer ◽  
John A. Tichy

Abstract The development of the hip prosthesis is a result of extensive collaboration between the medical and engineering fields. Although the technology to replace ailing human joints with artificial replicas is quite advanced, these remarkable advances require additional attention. In particular, extending the service life of a hip prosthesis is a primary consideration. An artificial hip joint may require revision surgery due to a number of contributions, one of which is extensive wear. Within the first few years following hip implantation, high amounts of wear particles form due to the contact of the articulating surfaces. The amounts of wear debris generated is a function of the material combinations of the rubbing surfaces of the joint, the amount of lubrication present in the joint during activity and the types and levels of activity.


Bone ◽  
2012 ◽  
Vol 50 ◽  
pp. S188
Author(s):  
D. De Pasquale⁎ ◽  
A. Beraudi ◽  
M. Montesi ◽  
S. Squarzoni ◽  
F. Traina ◽  
...  

1999 ◽  
Vol 70 (6) ◽  
pp. 578-582 ◽  
Author(s):  
H Lucas Anissian ◽  
André Stark ◽  
Allen Gustafson ◽  
Victoria Good ◽  
Ian C Clarke

Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S289 ◽  
Author(s):  
S. Stea ◽  
F. Traina ◽  
A. Beraudi ◽  
M. Montesi ◽  
S. Squarzoni ◽  
...  

2021 ◽  
Vol 274 ◽  
pp. 125187
Author(s):  
Nibedita Nayak ◽  
Shaik Akbar Basha ◽  
Surya Kant Tripathi ◽  
Bijesh K. Biswal ◽  
Monalisa Mishra ◽  
...  

Author(s):  
P. Frayssinet ◽  
J. Hanker ◽  
D. Hardy ◽  
B. Giammara

Prostheses implanted in hard tissues cannot be processed for electron microscopic examination or microanalysis in the same way as those in other tissues. For these reasons, we have developed methods allowing light and electron microscopic studies as well as microanalysis of the interface between bone and a metal biomaterial coated by plasma-sprayed hydroxylapatite(HA) ceramic.An HA-coated titanium hip prosthesis (Corail, Landos, France), which had been implanted for two years, was removed after death (unrelated to the orthopaedic problem). After fixation it was dehydrated in solutions of increasing ethanol concentration prior to embedment in polymethylmethacrylate(PMMA). Transverse femur sections were obtained with a diamond saw and the sections then carefully ground to a thickness of 200 microns. Plastic-embedded sections were stained for calcium with a silver methenamine modification of the von Kossa method for calcium staining and coated by carbon. They have been examined by back-scatter SEM on an ISI-SS60 operated at 25 KV. EDAX has been done on cellular inclusions and extracellular bone matrix.


JAMA ◽  
1965 ◽  
Vol 194 (13) ◽  
pp. 1378-1381
Author(s):  
O. E. Aufranc

2003 ◽  
Vol 42 (06) ◽  
pp. 234-239 ◽  
Author(s):  
T. Mumme ◽  
P. Reinartz ◽  
D. Wirtz ◽  
F. U. Niethard ◽  
U. Büll ◽  
...  

Summary Aim: Identification of typical patterns for fluorodeoxyglucose (FDG) uptake in positron emission tomography (PET) to detect aseptic loosening of hip prosthesis (ace-tabular and/or femoral component) and prosthetic infection. Methods: 18 patients with painful hip prosthesis underwent PET using a dedicated full ring scanner after application of 200-300 MBq FDG. The interface between bone and surrounding soft tissue or bone as displayed on coronal slices was divided into 12 segments in accordance with the classifications of Delee and Gruen. FDG uptake in each of the segments was scored (0-3) by two independent observers. Intraoperative findings were regarded as the gold standard. Results: After surgical revision 14 acetabular components and 9 femoral components were found to be loose and prosthetic infection was present in 7 prostheses. Loosening of the acetabular component was correlated to enhanced uptake in the middle of the acetabular interface, while loosening of the femoral component was correlated to enhanced uptake in the proximal and middle segment of the lateral femoral interface and the proximal segment of the medial femoral interface. A similar pattern was found in prosthetic infection with high uptake along the middle portion of the lateral fe-moral interface. In 6 of 7 infected prostheses loosening of the acetabular and of the femoral component was present. Taking the typical uptake patterns as criteria for loosening and grade 3 uptake as an additional criterion for septic loosening the accuracy of PET imaging in the detection of loosening of the acetabular or the femoral component and of prosthetic infection was 72, 78 and 89%, respectively. Conclusion: This pilot study presents FDG-PET as a promising diagnostic tool for patients with painful hip prostheses. Its clinical value should be evaluated in a larger patient population.


Sign in / Sign up

Export Citation Format

Share Document