zirconia toughened alumina
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 76)

H-INDEX

33
(FIVE YEARS 6)

2021 ◽  
Vol 274 ◽  
pp. 125187
Author(s):  
Nibedita Nayak ◽  
Shaik Akbar Basha ◽  
Surya Kant Tripathi ◽  
Bijesh K. Biswal ◽  
Monalisa Mishra ◽  
...  

2021 ◽  
Vol 904 ◽  
pp. 174-180
Author(s):  
Teow Hsien Loong ◽  
Sivakumar Sivanesan ◽  
Se Yong Eh Noum

The effects of sintering profiles on the Zirconia Toughened Alumina (ZTA) composite containing 0 vol% Y-TZP (pure alumina) to 20 vol% Y-TZP content prepared by a sintering method known as two-stage sintering were investigated. The heating rate was set between 10°C/min to 20°C/min, T1 set between 1400°C to 1500°C, T2 at 1350°C and holding time was set at 12 hours. The samples’ microstructural properties and mechanical properties, including bulk density, Vickers hardness, Young’s modulus and fracture toughness, were evaluated. Based on the data obtained, the ZTA composites with 10 vol% Y-TZP sintered at a heating rate of 10°C/min and holding time of 12 hours were able to achieve mechanical properties requirements set by the industry standard. In addition, the maximum ZTA composite’s bulk density was recorded to be above 90% T.D, while the Vickers hardness of the composite was recorded to be exceeding 17 GPa. The ZTA composite also recorded maximum Young’s modulus exceeding 380 GPa and fracture toughness above 6 MPam1/2.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


2021 ◽  
Vol 11 (19) ◽  
pp. 9326
Author(s):  
Chae-Young Lee ◽  
Sujin Lee ◽  
Jang-Hoon Ha ◽  
Jongman Lee ◽  
In-Hyuck Song ◽  
...  

Porous ceramics have attracted researchers due to their high chemical and thermal stability. Among various types of porous ceramics, reticulated porous ceramics have both high porosity and good permeability. These properties of porous ceramics are difficult to replace with porous metals and polymers. ZTA is used in a variety of applications, and a wealth of experimental data has already been collected. However, research reports on reticulated porous zirconia-toughened alumina (ZTA) are insufficient. Therefore, we prepared reticulated porous ZTA via the replica template method. In this study, various processing conditions (average particle size, zirconia content, solid loading, dispersant, and thickener) were adjusted to improve the compressive strength of the reticulated porous ZTA. As a result, the optimized processing conditions for improving the compressive strength of reticulated porous ZTA could be determined.


2021 ◽  
pp. 088532822110365
Author(s):  
Jing Shan ◽  
Song Wang ◽  
Huaen Xu ◽  
Haibo Zhan ◽  
Zhen Geng ◽  
...  

Due to its high wear resistance and good biocompatibility, zirconia toughened alumina (ZTA) is an ideal material used as load-bearing implant. However, ZTA needs to be modified to overcome its bio-inert and thus improve osseointegration. Cerium oxide, which has been proved to be a bone-friendly ceramic, might be a desired material to enhance the bioactivity of ZTA. In this study, ZTA and cerium oxide doped ZTA (ZTAC) were prepared via sintering method. The in vitro study showed that the addition of cerium oxide promoted MC3T3-E1 cell adhesion and spreading through upregulating ITG α5 and ITG β1. In addition, the incorporation of cerium oxide enhanced cell proliferation, ALP activity, and ECM mineralization capacity. Moreover, the incorporation of cerium oxide promoted the expressions of osteogenesis related genes, such as ALP, Col-I, and OCN. The in vivo implantation test via a SD rat model showed that the incorporation of cerium oxide promoted new bone formation and bone-implant integration. In summary, this study provided a new strategy to fabricate bioactive ZTA implant for potential application in orthopedics field.


Sign in / Sign up

Export Citation Format

Share Document