A combination of garlic oil and cooked chilli oil could be effective and efficient for pigeon production

Author(s):  
Jian Du ◽  
Tianchao Bao ◽  
Zhongyu Wang ◽  
Jinhua Sun
Keyword(s):  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Seyedalireza Mortazavi Tabrizi ◽  
Afshin Javadi ◽  
Navideh Anarjan ◽  
Seyyed Javid Mortazavi Tabrizi ◽  
Hamid Mirzaei

AbstractGarlic oil in water nanoemulsion was resulted through subcritical water method (temperature of 120 °C and pressure of 1.5 bar, for 2 h), using aponin, as emulsifier. Based on the prepared garlic oil nanoemulsion, astaxanthin–garlic oil nanoemulsions were prepared using spontaneous microemulsification technique. Response surface methodology was employed to evaluate the effects of independent variables namely, amount of garlic oil nanoemulsion (1–9 mL) and amount of provided astaxanthin powder (1–9 g) on particle size and polydispersity index (PDI) of the resulted nanoemulsions. Results of optimization indicated that well dispersed and spherical nanodroplets were formed in the nanoemulsions with minimum particle size (76 nm) and polydispersity index (PDI, 0.358) and maximum zeta potential value (−8.01 mV), using garlic oil nanoemulsion amount of 8.27 mL and 4.15 g of astaxanthin powder. Strong antioxidant activity (>100%) of the prepared astaxanthin–garlic oil nanoemulsion, using obtained optimum amounts of the components, could be related to the highest antioxidant activity of the colloidal astaxanthin (>100%) as compared to that of the garlic oil nanoemulsion (16.4%). However, higher bactericidal activity of the resulted nanoemulsion against Escherichia coli and Staphylococcus aureus, were related to the main sulfur bioactive components of the garlic oil in which their main functional groups were detected by Fourier transform-infrared spectroscopy.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2021 ◽  
Vol 161 ◽  
pp. 104865 ◽  
Author(s):  
Bowen Zhang ◽  
Liam J. Dodd ◽  
Peiyao Yan ◽  
Tom Hasell
Keyword(s):  

Author(s):  
Paweena Dana ◽  
Jakarwan Yostawonkul ◽  
Walailuk Chonniyom ◽  
Onuma Unger ◽  
Sakhiran Sakulwech ◽  
...  

2014 ◽  
Vol 98 (19) ◽  
pp. 8337-8346 ◽  
Author(s):  
Wen-Ru Li ◽  
Qing-Shan Shi ◽  
Qing Liang ◽  
Xiao-Mo Huang ◽  
Yi-Ben Chen

1988 ◽  
Vol 40 (2) ◽  
pp. 193-197 ◽  
Author(s):  
A.S. Sadhana ◽  
A.R. Rao ◽  
K. Kucheria ◽  
V. Bijani

Sign in / Sign up

Export Citation Format

Share Document