scholarly journals Gene clusters for biosynthesis of mycosporine‐like amino acids in dinoflagellate nuclear genomes: Possible recent horizontal gene transfer between species of Symbiodiniaceae (Dinophyceae)

2021 ◽  
Author(s):  
Eiichi Shoguchi
2014 ◽  
Vol 83 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Maria Virginia Sanchez-Puerta

This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.


2021 ◽  
Author(s):  
Jinjin Tao ◽  
Sishuo Wang ◽  
Tianhua Liao ◽  
Haiwei Luo

SummaryThe alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that nodulate legumes, supported by the nif and nod gene clusters. Recent environmental surveys show that Bradyrhizobium represents one of the most abundant free-living bacterial lineages in the world’s soils. However, our understanding of Bradyrhizobium comes largely from symbiotic members, biasing the current knowledge of their ecology and evolution. Here, we report the genomes of 88 Bradyrhizobium strains derived from diverse soil samples, including both nif-carrying and non-nif-carrying free-living (nod free) members. Phylogenomic analyses of these and 252 publicly available Bradyrhizobium genomes indicate that nif-carrying free-living members independently evolved from symbiotic ancestors (carrying both nif and nod) multiple times. Intriguingly, the nif phylogeny shows that all nif-carrying free-living members comprise a cluster which branches off earlier than most symbiotic lineages. These results indicate that horizontal gene transfer (HGT) promotes nif expansion among the free-living Bradyrhizobium and that the free-living nif cluster represents a more ancestral version compared to that in symbiotic lineages. Further evidence for this rampant HGT is that the nif in free-living members consistently co-locate with several important genes involved in coping with oxygen tension which are missing from symbiotic members, and that while in free-living Bradyrhizobium nif and the co-locating genes show a highly conserved gene order, they each have distinct genomic context. Given the dominance of Bradyrhizobium in world’s soils, our findings have implications for global nitrogen cycles and agricultural research.


2020 ◽  
Vol 10 (9) ◽  
pp. 3417-3433
Author(s):  
Javier F Tabima ◽  
Ian A Trautman ◽  
Ying Chang ◽  
Yan Wang ◽  
Stephen Mondo ◽  
...  

Abstract Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. The fungi rich in SM production are taxonomically concentrated in the subkingdom Dikarya, which comprises the phyla Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus. Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays also confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont.


2021 ◽  
Author(s):  
Benjamin M. Anderson ◽  
Kirsten Krause ◽  
Gitte Petersen

Background: The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results: The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with ten missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. Conclusions: The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of our Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Benjamin M. Anderson ◽  
Kirsten Krause ◽  
Gitte Petersen

Abstract Background The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with 10 missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. Conclusions The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of the Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Abdoul-Razak Tidjani ◽  
Jean-Noël Lorenzi ◽  
Maxime Toussaint ◽  
Erwin van Dijk ◽  
Delphine Naquin ◽  
...  

ABSTRACT In this work, by comparing genomes of closely related individuals of Streptomyces isolated at a spatial microscale (millimeters or centimeters), we investigated the extent and impact of horizontal gene transfer in the diversification of a natural Streptomyces population. We show that despite these conspecific strains sharing a recent common ancestor, all harbored significantly different gene contents, implying massive and rapid gene flux. The accessory genome of the strains was distributed across insertion/deletion events (indels) ranging from one to several hundreds of genes. Indels were preferentially located in the arms of the linear chromosomes (ca. 12 Mb) and appeared to form recombination hot spots. Some of them harbored biosynthetic gene clusters (BGCs) whose products confer an inhibitory capacity and may constitute public goods that can favor the cohesiveness of the bacterial population. Moreover, a significant proportion of these variable genes were either plasmid borne or harbored signatures of actinomycete integrative and conjugative elements (AICEs). We propose that conjugation is the main driver for the indel flux and diversity in Streptomyces populations. IMPORTANCE Horizontal gene transfer is a rapid and efficient way to diversify bacterial gene pools. Currently, little is known about this gene flux within natural soil populations. Using comparative genomics of Streptomyces strains belonging to the same species and isolated at microscale, we reveal frequent transfer of a significant fraction of the pangenome. We show that it occurs at a time scale enabling the population to diversify and to cope with its changing environment, notably, through the production of public goods.


2013 ◽  
Vol 79 (21) ◽  
pp. 6803-6812 ◽  
Author(s):  
Ave Tooming-Klunderud ◽  
Hanne Sogge ◽  
Trine Ballestad Rounge ◽  
Alexander J. Nederbragt ◽  
Karin Lagesen ◽  
...  

ABSTRACTHorizontal gene transfer is common in cyanobacteria, and transfer of large gene clusters may lead to acquisition of new functions and conceivably niche adaption. In the present study, we demonstrate that horizontal gene transfer between closely relatedPlanktothrixstrains can explain the production of the same oligopeptide isoforms by strains of different colors. Comparison of the genomes of eightPlanktothrixstrains revealed that strains producing the same oligopeptide isoforms are closely related, regardless of color. We have investigated genes involved in the synthesis of the photosynthetic pigments phycocyanin and phycoerythrin, which are responsible for green and red appearance, respectively. Sequence comparisons suggest the transfer of a functional phycoerythrin gene cluster generating a red phenotype in a strain that is otherwise more closely related to green strains. Our data show that the insertion of a DNA fragment containing the 19.7-kb phycoerythrin gene cluster has been facilitated by homologous recombination, also replacing a region of the phycocyanin operon. These findings demonstrate that large DNA fragments spanning entire functional gene clusters can be effectively transferred between closely related cyanobacterial strains and result in a changed phenotype. Further, the results shed new light on the discussion of the role of horizontal gene transfer in the sporadic distribution of large gene clusters in cyanobacteria, as well as the appearance of red and green strains.


2018 ◽  

AbstractShared traits between prokaryotes and eukaryotes are helpful in the understanding of the tree of life evolution. In bacteria and eukaryotes, it has been shown a particular organization of tRNA genes as clusters, but this trait has not been explored in archaea domain. Here, based on analyses of complete and draft archaeal genomes, we demonstrated the prevalence of tRNA gene clusters in archaea. tRNA gene cluster was identified at least in three Archaea class, Halobacteria, Methanobacteria and Methanomicrobia from Euryarchaeota supergroup. Genomic analyses also revealed evidence of tRNA gene cluster associated with mobile genetic elements and horizontal gene transfer inter/intra-domain. The presence of tRNA gene clusters in the three domain of life suggests a role of this type of tRNA gene organization in the biology of the living organisms.


Sign in / Sign up

Export Citation Format

Share Document