The effects of long-term experimental warming on the structure of three High Arctic plant communities

2016 ◽  
Vol 27 (5) ◽  
pp. 904-913 ◽  
Author(s):  
Marc Edwards ◽  
Gregory H.R. Henry
2004 ◽  
Vol 10 (12) ◽  
pp. 1981-1995 ◽  
Author(s):  
Jeffrey M. Welker ◽  
Jace T. Fahnestock ◽  
Greg H. R. Henry ◽  
Kevin W. O'Dea ◽  
Rodney A. Chimner

2020 ◽  
Author(s):  
Juha Alatalo ◽  
Mohammad Bagher Erfanian ◽  
Ulf Molau ◽  
Shengbin Chen ◽  
Yang Bai ◽  
...  

Background and aim Global warming is expected to have large impacts on high alpine and Arctic ecosystems in future. Here we report the effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden.Methods Using open-top chambers (OTCs), we analysed the effects of long-term passive experimental warming on two high alpine plant communities, a species- and nutrient-poor heath and a more nutrient- and species-rich mesic meadow. We determined the impact on species composition, species diversity (at the level of rare, frequent and dominant species in each community), and phylogenetic and functional diversity.Key results Long-term warming drove differentiation in the species composition in both heath and meadow vegetation, with the warmed plots having distinctly different species composition in 2013 compared with 1995. In addition, variability in species composition increased in the meadow, while it decreased in the heath. The long-term warming had a significant negative effect on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only the phylogenetic diversity of dominant species was significantly affected. Long-term warming caused a reduction in graminoids in the heath, while deciduous shrubs increased. In the meadow, cushion-forming plants showed an increase in abundance from 2001 to 2013 in the warmed plots. Conclusions Responses in species and phylogenetic diversity to experimental warming varied over both time (medium vs long-term responses) and space (i.e. between the two neighbouring plant communities heath and meadow). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by the long-term warming.


Polar Science ◽  
2020 ◽  
pp. 100631
Author(s):  
Keita Nishizawa ◽  
Lucas Deschamps ◽  
Vincent Maire ◽  
Joël Bêty ◽  
Esther Lévesque ◽  
...  

2020 ◽  
Vol 71 (4) ◽  
pp. 752-767
Author(s):  
Ji Young Jung ◽  
Anders Michelsen ◽  
Mincheol Kim ◽  
Sungjin Nam ◽  
Niels M. Schmidt ◽  
...  

2010 ◽  
Vol 17 (4) ◽  
pp. 1611-1624 ◽  
Author(s):  
REBECCA A. KLADY ◽  
GREGORY H. R. HENRY ◽  
VALERIE LEMAY

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Sean M. Schaeffer ◽  
Elizabeth Sharp ◽  
Joshua P. Schimel ◽  
Jeffery M. Welker

2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


2016 ◽  
Vol 121 (5) ◽  
pp. 1236-1248 ◽  
Author(s):  
Philipp R. Semenchuk ◽  
Casper T. Christiansen ◽  
Paul Grogan ◽  
Bo Elberling ◽  
Elisabeth J. Cooper

Sign in / Sign up

Export Citation Format

Share Document