Using forestry inventories and satellite imagery to assess floristic variation in bamboo‐dominated forests in Peruvian Amazonia

Author(s):  
Pablo Pérez Chaves ◽  
Natalia Reategui Echeverri ◽  
Kalle Ruokolainen ◽  
Risto Kalliola ◽  
Jasper Van doninck ◽  
...  
2020 ◽  
Vol 12 (9) ◽  
pp. 1523 ◽  
Author(s):  
Pablo Pérez Chaves ◽  
Gabriela Zuquim ◽  
Kalle Ruokolainen ◽  
Jasper Van doninck ◽  
Risto Kalliola ◽  
...  

Recognition of the spatial variation in tree species composition is a necessary precondition for wise management and conservation of forests. In the Peruvian Amazonia, this goal is not yet achieved mostly because adequate species inventory data has been lacking. The recently started Peruvian national forest inventory (INFFS) is expected to change the situation. Here, we analyzed genus-level variation, summarized through non-metric multidimensional scaling (NMDS), in a set of 157 INFFS inventory plots in lowland to low mountain rain forests (<2000 m above sea level) using Landsat satellite imagery and climatic, edaphic, and elevation data as predictor variables. Genus-level floristic patterns have earlier been found to be indicative of species-level patterns. In correlation tests, the floristic variation of tree genera was most strongly related to Landsat variables and secondly to climatic variables. We used random forest regression, under varying criteria of feature selection and cross-validation, to predict the floristic composition on the basis of Landsat and environmental data. The best model explained >60% of the variation along NMDS axes 1 and 2 and 40% of the variation along NMDS axis 3. We used this model to predict the three NMDS dimensions at a 450-m resolution over all of the Peruvian Amazonia and classified the pixels into 10 floristic classes using k-means classification. An indicator analysis identified statistically significant indicator genera for 8 out of the 10 classes. The results are congruent with earlier studies, suggesting that the approach is robust and can be applied to other tropical regions, which is useful for reducing research gaps and for identifying suitable areas for conservation.


2020 ◽  
Vol 2020 (8) ◽  
pp. 114-1-114-7
Author(s):  
Bryan Blakeslee ◽  
Andreas Savakis

Change detection in image pairs has traditionally been a binary process, reporting either “Change” or “No Change.” In this paper, we present LambdaNet, a novel deep architecture for performing pixel-level directional change detection based on a four class classification scheme. LambdaNet successfully incorporates the notion of “directional change” and identifies differences between two images as “Additive Change” when a new object appears, “Subtractive Change” when an object is removed, “Exchange” when different objects are present in the same location, and “No Change.” To obtain pixel annotated change maps for training, we generated directional change class labels for the Change Detection 2014 dataset. Our tests illustrate that LambdaNet would be suitable for situations where the type of change is unstructured, such as change detection scenarios in satellite imagery.


Author(s):  
SiMing Liang ◽  
FengYang Qi ◽  
YiFan Ding ◽  
Rui Cao ◽  
Qiang Yang ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Faezah Pardi

This study was conducted at Pulau Jerejak, Penang to determine the floristic variation of its tree communities. A 0.5-hectare study plot was established and divided into 11 subplots. A total of 587 trees with diameter at breast height (DBH) of 5 cm and above were measured, identified and recorded. The tree communities comprised of 84 species, 63 genera and 32 families. The Myrtaceae was the most speciose family with 10 recorded species while Syzgium glaucum (Myrtaceae) was the most frequent species. The Myrtaceae recorded the highest density of 306 individuals while Syzgium glaucum (Myrtaceae) had the highest species density of 182 individuals. Total tree basal area (BA) was 21.47 m2/ha and family with the highest BA was Myrtaceae with 5.81 m2/ha while at species level, Syzgium glaucum (Myrtaceae) was the species with the highest total BA in the plot with value of 4.95 m2/ha. The Shannon˗Weiner Diversity Index of tree communities showed a value of 3.60 (H'max = 4.43) and Evenness Index of 0.81 which indicates high uniformity of tree species. The Margalef Richness Index (R') revealed that the tree species richness was 13.02. Myrtaceae had the highest Importance Value of 20.4%. The Canonical Correspondence Analysis (CCA) showed that Diospyros buxifolia (Ebenaceae) and Pouteria malaccensis (Sapotaceae) were strongly correlated to low pH. Dysoxylum cauliflorum (Meliaceae) and Eriobotrya bengalensis (Rosaceae) were correlated to phosphorus (P) and calcium ion (Ca2+), respectively. Therefore, the trees species composition at Pulau Jerejak showed that the biodiversity is high and conservation action should be implemented to protect endangered tree species. Keywords: Floristic variation; Tree communities; Trees composition; Pulau Jerejak; Species diversity


Sign in / Sign up

Export Citation Format

Share Document