genus level
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 199)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Fang Qin ◽  
Sen Du ◽  
Zefeng Zhang ◽  
Hanqi Ying ◽  
Ying Wu ◽  
...  

AbstractViruses play critical roles in influencing biogeochemical cycles and adjusting host mortality, population structure, physiology, and evolution in the ocean. Marine viral communities are composed of numerous genetically distinct subfamily/genus-level viral groups. Among currently identified viral groups, the HMO-2011-type group is known to be dominant and broadly distributed. However, only four HMO-2011-type cultivated representatives that infect marine SAR116 and Roseobacter strains have been reported to date, and the genetic diversity, potential hosts, and ecology of this group remain poorly elucidated. Here, we present the genomes of seven HMO-2011-type phages that were isolated using four Roseobacter strains and one SAR11 strain, as well as additional 207 HMO-2011-type metagenomic viral genomes (MVGs) identified from various marine viromes. Phylogenomic and shared-gene analyses revealed that the HMO-2011-type group is a subfamily-level group comprising at least 10 discernible genus-level subgroups. Moreover, >2000 HMO-2011-type DNA polymerase sequences were identified, and the DNA polymerase phylogeny also revealed that the HMO-2011-type group contains diverse subgroups and is globally distributed. Metagenomic read-mapping results further showed that most HMO-2011-type phages are prevalent in global oceans and display distinct geographic distributions, with the distribution of most HMO-2011-type phages being associated with temperature. Lastly, we found that members in subgroup IX, represented by pelagiphage HTVC033P, were among the most abundant HMO-2011-type phages, which implies that SAR11 bacteria are crucial hosts for this viral group. In summary, our findings substantially expand current knowledge regarding the phylogenetic diversity, evolution, and distribution of HMO-2011-type phages, highlighting HMO-2011-type phages as major ecological agents that can infect certain key bacterial groups.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Bungo Shirouchi ◽  
Ayano Fukuda ◽  
Taiki Akasaka

Choline, betaine, and L-carnitine are transformed into trimethylamine (TMA) by gut microbiota, absorbed into the liver, and oxidized into trimethylamine-N-oxide (TMAO) by flavin-containing monooxygenases. Elevated TMAO levels may negatively affect human health. As phosphatidylcholine (PC) is the main source of dietary choline, its intake or PC-rich foods may be harmful to human health; however, quantitative comparative information among dietary choline compounds (PC, glycerophosphocholine [GPC], and choline chloride [CC]) regarding in vivo generation of TMAO is lacking. Here, we compared the effects of PC, GPC, and CC on plasma TMAO levels in rats. Furthermore, we investigated their effects on gut microbiota at the genus level. Dietary PC did not affect plasma TMAO levels, whereas dietary GPC and CC significantly increased them. At the genus level, plasma TMAO levels were significantly negatively correlated with relative abundances of Anaerotruncus, Actinomyces, Enterococcus, Dialister, Clostridium XIVa, and Granulicatella; they were significantly positively correlated with that of Coprobacter. Moreover, the relative abundances of Anaerotruncus and Coprobacter were found to predict plasma TMAO levels. Therefore, dietary PC, unlike GPC or CC, does not increase plasma TMAO levels in rats. Furthermore, several gut microbes are associated with changes in plasma TMAO levels in rats fed with choline compounds.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Atsushi Nakabachi ◽  
Hiromitsu Inoue ◽  
Yuu Hirose

Abstract Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.


2022 ◽  
Vol 43 (1) ◽  
pp. 115-122
Author(s):  
S. Vaish ◽  
◽  
N. Garg ◽  
I.Z. Ahmad ◽  
Muthukumar M. ◽  
...  

Aim: Biodynamic farming system involves use of 8 different biodynamic preparations (BD 500-BD 507). Multi functionality of any ecosystem is due to its microbial diversity and community composition of microbes. So the present study was aimed to determine the total fungal population viz. unculturable ones, metagenomic analysis was done. Methodology: In the present study, 18S rDNA sequencing of V3-V4 amplicon regions was performed to identify and characterize fungal diversity, which existed in these preparations. Results: Alpha diversity was found to be maximum in BD506 with 868 OTU (operational taxanomic units) and minimum in BD507 with 254 OTU. At phylum level, the most abundant phylum was Ascomycota as recorded in 7 BD preparations with exception in the BD 500 (Unassigned). At genus level highest percentage of OTU abundance was observed for unassigned genus in all BD preparations, except Mortierella in BD 500 and BD 502; Microascus in BD 501 and BD504; Gymnoascus in BD503, Scedosporium in BD 505, Mucor in BD 506 and Hyphopichia in BD 507. On the basis of species diversity, BD502, 503 and 506 showed high percentage of OTU abundance for Mucor racemosus, while Mortierella oligospora was abundant in BD500, Dipodascus geotrichum in BD 501, Kernia pachypleura in BD504, Petriella setifera in BD505 and Hyphopichia burtonii in BD 507. Interpretation: This indicated a unqiue class of fungus predominating each type of BD preparation. Furthermore, a large proportion of unassigned fungi at phylum and genus level were detected in metagenome analysis which might have specific roles in contributing for their overall effectiveness of each kind of BD preparations.


2022 ◽  
Vol 48 (1) ◽  
pp. 27-43
Author(s):  
Ryan Schmidt ◽  
Brianna Casario ◽  
Pamela Zipse ◽  
Jason Grabosky

Background: With the creation of photo-based plant identification applications (apps), the ability to attain basic identifications of plants in the field is seemingly available to anyone who has access to a smartphone. The use of such apps as an educational tool for students and as a major identification resource for some community science projects calls into question the accuracy of the identifications they provide. We created a study based on the context of local tree species in order to offer an informed response to students asking for guidance when choosing a tool for their support in classes. Methods: This study tested 6 mobile plant identification apps on a set of 440 photographs representing the leaves and bark of 55 tree species common to the state of New Jersey (USA). Results: Of the 6 apps tested, PictureThis was the most accurate, followed by iNaturalist, with PlantSnap failing to offer consistently accurate identifications. Overall, these apps are much more accurate in identifying leaf photos as compared to bark photos, and while these apps offer accurate identifications to the genus-level, there seems to be little accuracy in successfully identifying photos to the species-level. Conclusions: While these apps cannot replace traditional field identification, they can be used with high confidence as a tool to assist inexperienced or unsure arborists, foresters, or ecologists by helping to refine the pool of possible species for further identification.


2022 ◽  
Author(s):  
Charles Golightly ◽  
Danielle M. DeLeo ◽  
Nicole Perez ◽  
Tin-Yam Chan ◽  
José M. Landeira ◽  
...  

Deep-sea shrimp of the family Sergestidae Dana, 1852 provide a unique system for studying the evolution of bioluminescence. Most species within the family possess autogenic bioluminescent photophores in one of three distinct forms: lensed photophores; non-lensed photophores; or internal organs of Pesta. This morphological diversity across the Sergestidae has resulted in recent major taxonomic revisions, dividing the two major genera (Sergia Stimpson, 1860 and Sergestes Milne Edwards, 1830) into 15. The present study capitalises on molecular data to construct an updated genus-level phylogeny of sergestid shrimp. DNA was successfully extracted from ~87 individuals belonging to 13 of the 15 newly proposed genera. A ‘genome skimming’ approach was implemented, allowing the capture of mitochondrial genomic data across 19 sergestid species. Additional individuals have been incorporated into the phylogeny through Sanger sequencing of both nuclear (H3 and NAK) and mitochondrial (16S and COI) genes. The resulting molecular phylogeny is compared with previous morphological trees with specific attention to genus-level relationships. The -sergestes group was rendered non-monophyletic and the -sergia group was recovered as monophyletic. Ancestral state reconstructions of light organ type indicate that organs of Pesta is the ancestral state for the family. Non-lensed photophores evolved once across the -sergia group, but were later lost in the deepest living genus, Sergia. Lensed photophores also evolved once within the genera Prehensilosergia Vereshchaka, Olesen & Lunina, 2014, Lucensosergia Vereshchaka, Olesen & Lunina, 2014 and Challengerosergia Vereshchaka, Olesen & Lunina, 2014. These findings identify preliminary patterns across light organ type and species’ depth distributions; however, future research that incorporates finer-scale depth data and more species is needed to confirm our findings.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Mariona Pinart ◽  
Andreas Dötsch ◽  
Kristina Schlicht ◽  
Matthias Laudes ◽  
Jildau Bouwman ◽  
...  

Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (−0.06, 95% CI −0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (−4.79, 95% CI −10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.


Sign in / Sign up

Export Citation Format

Share Document