Kinetics in thermal evolution of Raman spectra of chondritic organic matter to evaluate thermal history of their parent bodies

2020 ◽  
Vol 55 (8) ◽  
Author(s):  
Kento Kiryu ◽  
Yoko Kebukawa ◽  
Motoko Igisu ◽  
Takazo Shibuya ◽  
Michael E. Zolensky ◽  
...  



2021 ◽  
Author(s):  
Peilin Jiang ◽  
Xiaozhi Yang ◽  
et al.

Fourier transform infrared and Raman spectra, electron microprobe data, and resolved band absorbance ratios of samples.<br>



2021 ◽  
Author(s):  
Peilin Jiang ◽  
Xiaozhi Yang ◽  
et al.

Fourier transform infrared and Raman spectra, electron microprobe data, and resolved band absorbance ratios of samples.<br>



2021 ◽  
Author(s):  
Dariusz Botor ◽  
Stanisław Mazur ◽  
Aneta A. Anczkiewicz ◽  
István Dunkl ◽  
Jan Golonka

Abstract. The Phanerozoic tectono-thermal evolution of the SW slope of the East European Platform (EEP) in Poland is reconstructed by means of thermal maturity, low temperature thermochronometry and thermal modelling. We provide a set of new thermochronometric data and integrate stratigraphic and thermal maturity information to constrain the burial and thermal history of sediments. Apatite fission track analysis (AFT) and zircon (U-Th)/He (ZHe) thermochronology have been carried out on samples of sandstones, bentonites, diabase and crystalline basement rocks collected from 17 boreholes located in central and NE Poland. They penetrated sedimentary cover of the EEP subdivided from the north to south into the Baltic, Podlasie and Lublin Basins. The average ZHe ages from Proterozoic basement rocks as well as Ordovician to Silurian bentonites and Cambrian to lower Carboniferous sandstones range from 848 ± 81 Ma to 255 ± 22 Ma with a single early Permian age of 288 Ma, corresponding to cooling after a thermal event. The remaining ZHe ages represent partial reset or source ages. The AFT ages of samples are dispersed in the range of 235.8 ± 17.3 (Middle Triassic) to 42.1 ± 11.1 (Paleogene) providing a record of Mesozoic and Cenozoic cooling. The highest frequency of the AFT ages is in the Jurassic and Early Cretaceous prior to Alpine basin inversion. Thermal maturity results are consistent with the SW-ward increase of the Palaeozoic and Mesozoic sediments thickness. An important break in a thermal maturity profile exists across the base Permian-Mesozoic unconformity. Thermal modelling showed that significant heating of Ediacaran to Carboniferous sedimentary successions occurred before the Permian with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic-Podlasie and Lublin Basins, respectively. The results obtained suggest an important role of early Carboniferous uplift and exhumation at the SW margin of the EEP. The SW slope of the latter was afterward overridden in the Lublin Basin by the Variscan orogenic wedge. Its tectonic loading interrupted Carboniferous uplift and caused resumption of sedimentation in the late Viséan. Consequently, a thermal history of the Lublin Basin is different from that in the Podlasie and Baltic Basins, but similar to other sections of the Variscan foreland, characterised by maximum burial at the end of Carboniferous. The Mesozoic thermal history was characterised by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow. Burial caused maximum paleotemperatures in the SW part of the study area, where the EEP was covered by an extensive sedimentary pile. However, farther NE, due to low temperatures caused by shallow burial, the impact of fluids can be detected by VR, illite/smectite and thermochronological data.



1995 ◽  
Vol 32 (10) ◽  
pp. 1618-1642 ◽  
Author(s):  
Randall R. Parrish

The eastern metamorphic culmination of the southern Canadian Cordillera is a composite core complex, which at low structural levels exposes the Monashee décollement, a major contractional fault with large Late Cretaceous to Paleocene east-directed displacement. The hanging wall of this fault, the Selkirk allochthon, is a sheared thrust sheet, recording metamorphic and deformational events spanning the period from ca. 170 to 60 Ma, with younger kinematic and thermal events recorded at progressively deeper levels. The Monashee complex, the footwall terrane of the Monashee décollement, consists of an Early Proterozoic crystalline basement complex overlain by Late Proterozoic and perhaps Phanerozoic metasedimentary rocks. The Monashee complex was significantly metamorphosed and deformed in Paleogene time (60–55 Ma), on the basis of U–Pb data presented in this paper. Analysis of U–Pb titanite data show that the duration of this metamorphic event was but a few million years at most, and it provides a strong argument that the heat source for this metamorphism was the overlying hot Selkirk allochthon. A ~1.85–1.90 Ga metamorphism also is recorded within the Precambrian basement. The tectonometamorphic chronology of the footwall and hanging-wall terranes of the Monashee décollement are very different, and only share Paleogene thermal–tectonic events when the two were structurally juxtaposed by deep-seated thrusting. Although this region is the hinterland of the foreland belt of the southern Cordillera, the thermal and tectonic history of the metamorphic core zone is analogous to that in a thrust belt setting where warmer rocks progressively override cooler rocks as displacement migrates toward the foreland. In such settings, a protracted and more complex thermal history of the hanging wall is juxtaposed with a simpler thermal history of shorter duration of the footwall. Seismic reflection and chronological information indicate that the Monashee décollement is the same structure as the basal décollement beneath the full width of the southern Rocky Mountains, representing its deep-seated continuation in the hinterland. Tectonic denudation resulting from Eocene extension and crustal-scale tilting, followed by late Tertiary erosion, brought these rocks to the surface for study.



Sign in / Sign up

Export Citation Format

Share Document