scholarly journals Mitochondria, sex and variation in routine metabolic rate

2019 ◽  
Vol 28 (20) ◽  
pp. 4608-4619
Author(s):  
Timothy M. Healy ◽  
Reid S. Brennan ◽  
Andrew Whitehead ◽  
Patricia M. Schulte
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eric Ste-Marie ◽  
Yuuki Y. Watanabe ◽  
Jayson M. Semmens ◽  
Marianne Marcoux ◽  
Nigel E. Hussey

Abstract Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.


Behaviour ◽  
2016 ◽  
Vol 153 (13-14) ◽  
pp. 1545-1566 ◽  
Author(s):  
Mariana Velasque ◽  
Mark Briffa

Studies on animal behaviour have suggested a link between personality and energy expenditure. However, most models assume constant variation within individuals, even though individuals vary between observations. Such variation is called intraindividual variation in behaviour (IIV). We investigate if IIV in the duration of the startle response is associated with metabolic rates (MR) in the hermit crabPagurus bernhardus. We repeatedly measured startle response durations and MR during each observation. We used double hierarchical generalized linear models to ask whether among and IIV in behaviour was underpinned by MR. We found no association between the mean duration of the startle responses and either routine MR or MR during startle response. Nevertheless, we found that IIV increased with MR during startle responses and decreased with routine MR. These results indicate that crabs with higher MR during startle responses behave less predictably, and that predictability is reduced during exposure to elevated temperatures.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 46
Author(s):  
Mirela Crețu ◽  
Raluca-Cristina Guriencu ◽  
Lorena Dediu ◽  
Maria-Desimira Stroe

In the present study, oxygen consumption of two sturgeon species, beluga (Huso huso), sterlet (Acipenser ruthenus), and their hybrid reared in a recirculating aquaculture system were compared over body intervals from 54–107 g to determine the interspecific variation of metabolic rate. Metabolic rates were measured using the intermittent-flow respirometry technique. Standard oxygen consumption rates (SMR, mg O2 h−1) of sterlet were 30% higher compared with beluga and 22% higher compared with bester hybrid. The routine metabolic rate (RMR, mg O2 h−1) averaged 1.58 ± 0.13 times the SMR for A. ruthenus, 1.59 ± 0.3 for H. huso, and 1.42 ± 0.15 for the hybrid bester. However, the study revealed no significant differences (p > 0.05) between mean values of SMR and RMR for beluga and bester hybrid. The scaling coefficient reflected a closed isometry for the hybrid (b = 0.97), while for the purebred species the coefficient of 0.8 suggests a reduction in oxygen consumption with increasing body mass. These findings may contribute to understanding the differences in growth performances and oxygen requirements of the studied species reared in intensive aquaculture system.


Sign in / Sign up

Export Citation Format

Share Document