somniosus microcephalus
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Jena Elizabeth Edwards ◽  
Kevin J. Hedges ◽  
Nigel E. Hussey

As Arctic ecosystems become increasingly vulnerable to climate- and human-induced stressors, effective marine management will rely on the characterization of fish movements. Over a six-year study period, the movements of 65 Greenland sharks (Somniosus microcephalus) (41 males, 24 females [mean LT = 2.48 ± 0.50 m]) were monitored using static acoustic telemetry. Shark presence in a typical deep-water fjord was restricted to the summer open-water period. Residency duration varied based on age-class (juvenile [n=17] vs. subadult [n=48]), however, activity space size and extent were comparable. A quarter of tagged sharks (n=16) returned to the system in subsequent years after tagging, with individuals re-detected for a maximum of 4 y. Movements between coastal and offshore waters occurred primarily via a deep-water channel with sharks detected along the channel banks. These multi-year data depict how a potentially vulnerable Arctic predator utilizes a deep-water fjord in the context of the regional development of community inshore and offshore commercial fisheries.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Meaghan A. Swintek ◽  
Ryan P. Walter

Abstract Objective The objectives of this work are to isolate, develop, and characterize polymorphic microsatellite markers for use in Greenland sharks (Somniosus microcephalus). Results Thirteen microsatellite loci were successfully amplified and yielded multi-locus genotypes for 36 S. microcephalus individuals from Grise Fjord (n = 16) and Svalbard (n = 20). Each locus yielded between 2 and 9 alleles and observed heterozygosity ranged from 0.11 to 0.70 when estimated across both sites. One locus and three loci deviated from HWE following Bonferroni correction, for individuals sampled from Grise Fjord and Svalbard, respectively. Cross-amplification was successful at every locus for five of the ten S. pacificus individuals.


2021 ◽  
Author(s):  
Meaghan A Swintek ◽  
Ryan P Walter

Abstract Objective: The objectives of this work are to isolate, develop, and characterize polymorphic microsatellite markers for use in Greenland sharks (Somniosus microcephalus). Results: Thirteen microsatellite loci were successfully amplified and yielded multi-locus genotypes for 36 S. microcephalus individuals from Grise Fjord (n = 16) and Svalbard (n = 20). Each locus yielded between 2 to 9 alleles and observed heterozygosity ranged from 0.11 to 0.70 when estimated across both sites. One locus and three loci deviated from HWE following Bonferroni correction, for individuals sampled from Grise Fjord and Svalbard, respectively. Cross-amplification was successful at every locus for five of the ten S. pacificus individuals.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10536
Author(s):  
Margaret H. Folkins ◽  
Scott M. Grant ◽  
Philip Walsh

High incidental catches of Greenland shark (Somniosus microcephalus) in Nunavut’s Greenland halibut (Reinhardtius hippoglossoides) fishery has led to studies on the feasibility of capturing Greenland halibut with baited pots. In this study, catch rates among six experimental pots are compared. In addition to this, underwater video observations of Greenland halibut interacting with two of these experimental pot types are quantified in order to help provide recommendations on future pot designs. Catch rates of Greenland halibut differed among pots with different entrance mesh types, and none of the pots produced substantial amounts of bycatch. Strings of pots were deployed within a narrow corridor between baited gillnets targeting Greenland halibut, which may have affected catch results. Video observations revealed Greenland halibut entangled by their teeth significantly more often in entrance funnels constructed with 50 mm than with 19 mm clear monofilament netting and the entrance rate was 45% higher with the 19 mm netting. Greenland halibut that successfully entered a pot repeatedly became entangled by their teeth in 58 mm netting used in the side and end panels and in a horizontal panel used to separate the pot into a lower and upper chamber. The majority (80%) of Greenland halibut were observed to approach a pot against the current. The downstream entrance was aligned with the current in 52% of the observed Greenland halibut approaches. Seventy percent of entry attempts and 67% of successful entries occurred when fish approached against the current and when the entrance was aligned with the current. These observations lead to recommendations that future studies consider developing a four entrance pot to ensure an entrance is always aligned with bottom currents. Based on these observations of entanglements, it is recommended to use 19 mm clear monofilament netting in the entrance funnel, 100 mm polyethylene netting in the exterior panels, and 19 mm polypropylene netting in the horizontal panel when targeting Greenland halibut. Three Greenland sharks were observed interacting with the pots in the video sets, but none were captured or damaged the pots during the potting experiments, providing validity to the use of pots to mitigate the capture of Greenland shark in Nunavut territorial waters.


2021 ◽  
Vol 8 (1) ◽  
pp. 74-83
Author(s):  
Darcy G. Mc Nicholl ◽  
Les N. Harris ◽  
Tracey Loewen ◽  
Peter May ◽  
Lilian Tran ◽  
...  

Abstract Arctic marine ecosystems are changing, one aspect of which appears to be distributional expansions of sub-arctic species. For Arctic marine systems, there is limited occurrence information for many species, especially those found in restricted habitats (e.g., ice-covered, far north, or deep-water). Increasing observations through on-going Fisheries and Oceans Canada (DFO) community-based monitoring programs (e.g., Arctic Coast, Cambridge Bay Arctic Char stock assessment, Arctic Salmon, and Kugluktuk coastal surveys), community observation networks, and local media have augmented opportunities to document new occurrences of marine fishes. Combined data from historical records and contemporary observations at the local scale can then delineate these among three types of occurrences: gradual distributional expansion, episodic vagrants, and rare endemics. Here we document nine occurrences of unusual sightings across six fish species (Pink Salmon Oncorhynchus gorbuscha, Bering Wolffish Anarhichas orientalis, Greenland Shark Somniosus microcephalus, Broad Whitefish Coregonus nasus, Banded Gunnel Pholis fasciata and Salmon Shark Lamna ditropis) from six northern Canadian communities and classify the nature of each observation as rare, vagrant, or expanding distributions. Uniting scientific and local observations represents a novel approach to monitor distributional changes suitable for a geographically large but sparsely populated area such as the Canadian Arctic. The new occurrences are important for discerning the potential effects of the presence of these species in Arctic ecosystems. These observations more broadly will build on our understanding of northern biodiversity change associated with warming Arctic environments.


2020 ◽  
Author(s):  
Meaghan A Swintek ◽  
Ryan P Walter

Abstract Objective: The objectives of this work are to isolate, develop, and characterize polymorphic microsatellite markers for use in Greenland sharks (Somniosus microcephalus). Results: Thirteen microsatellite loci were successfully amplified and yielded multi-locus genotypes for 36 S. microcephalus individuals from Grise Fjord (n = 16) and Svalbard (n = 20). Each locus yielded between 2 to 9 alleles and observed heterozygosity ranged from 0.11 to 0.70 when estimated across both sites. One locus and three loci deviated from HWE following Bonferroni correction, for individuals sampled from Grise Fjord and Svalbard, respectively. Cross-amplification was successful at every locus for five of the ten S. pacificus individuals.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10407
Author(s):  
Scott M. Grant ◽  
Jenna G. Munden ◽  
Kevin J. Hedges

The Greenland shark (Somniosus microcephalus) is the main bycatch species in established and exploratory inshore longline fisheries for Greenland halibut (Reinhardtius hippoglossoides) on the east coast of Baffin Island, Canada. Bycatch and entanglement in longline gear has at times been substantial and post-release survival is questionable when Greenland sharks are released with trailing fishing gear. This study investigated the effect of the type of fishing line used in the gangion and gangion breaking strength on catch rates of Greenland shark and Greenland halibut in bottom set longlines. Circle (size 14/0, 0° offset) hooks were used throughout the study. Behavior of captured sharks, mode of capture (i.e., jaw hook and/or entanglement), level of entanglement in longline gear, time required to disentangle sharks and biological information (sex, body length and health status) were recorded. Catch rates of Greenland shark were independent of monofilament nylon gangion breaking strength and monofilament gangions captured significantly fewer Greenland sharks than the traditional braided multifilament nylon gangion. Catch rates and body size of Greenland halibut did not differ significantly between gangion treatments. Although most (84%) of the Greenland sharks were hooked by the jaw, a high percentage (76%) were entangled in the mainline. The mean length of mainline entangled around the body and/or caudal peduncle and caudal fin was 28.7 m. Greenland sharks exhibited cannibalistic behavior with 15% of captured sharks cannibalized. All remaining sharks were alive and survived the disentanglement process which can be attributed to their lethargic behavior and lack of resistance when hauled to the surface. Thus, as a conservation measure fishers should be encouraged to remove trailing fishing gear prior to release. Our results are used to demonstrate benefits to the fishing industry with regard to an overall reduction in the period of time to disentangle sharks and damage to fishing gear by switching from braided multifilament to monofilament gangions in Greenland halibut longline fisheries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eric Ste-Marie ◽  
Yuuki Y. Watanabe ◽  
Jayson M. Semmens ◽  
Marianne Marcoux ◽  
Nigel E. Hussey

Abstract Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.


Sign in / Sign up

Export Citation Format

Share Document