greenland shark
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Yuan Yan ◽  
Eva Cantoni ◽  
Chris Field ◽  
Margaret A Treble ◽  
Joanna Mills Flemming

Excess bycatch of marine species during commercial fishing trips is a challenging problem in fishery management worldwide. The aims of this paper are twofold: to introduce methods and provide a practical guide for spatio-temporal modelling of bycatch data, as well as to apply these methods and present a thorough examination of Greenland shark bycatch weight in a Canadian Arctic fishery. We introduce the spatially explicit two-part model and offer a step by step guide for applying the model to any form of bycatch data, from data cleaning, exploratory data analysis, variable and model selection, model checking, to results interpretation. We address various problems encountered in decision making and suggest that researchers proceed cautiously and always keep in mind the aims of the analysis when fitting a spatio-temporal model. Results identified spatio-temporal hotspots and indicated month and gear type were key drivers of high bycatch. The importance of onboard observers in providing robust bycatch data was also evident. These findings will help to inform conservation strategies and management decisions, such as limiting access to spatial hotspots, seasonal closures and gear restrictions.


Author(s):  
Yoshihiro Fujiwara ◽  
Yasuyuki Matsumoto ◽  
Takumi Sato ◽  
Masaru Kawato ◽  
Shinji Tsuchida

Abstract The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Bay, Japan. A single individual of the sleeper shark (female, ~300 cm in total length) was observed with two baited camera systems deployed simultaneously on the deep seafloor in the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic copepod attached to each eye. The same individual appeared at camera #2, which was deployed at a depth of 603 m, ~37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ~31 min after leaving camera #2. The distance between the two cameras was 436 m, and the average groundspeed and waterspeed of the shark were 0.21 and 0.25 m s−1, respectively, which were comparable with those of the Greenland shark Somniosus microcephalus (0.22–0.34 m s−1) exhibiting the slowest comparative swimming speed among fish species adjusted for size. The ambient water temperature of the Pacific sleeper shark was 5.3 °C, which is considerably higher than that of the Greenland shark (~2 °C). Such a low swimming speed might be explained by the ‘visual interactions hypothesis’, but it is not a consequence of the negative effects of cold water on their locomotor organs.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10536
Author(s):  
Margaret H. Folkins ◽  
Scott M. Grant ◽  
Philip Walsh

High incidental catches of Greenland shark (Somniosus microcephalus) in Nunavut’s Greenland halibut (Reinhardtius hippoglossoides) fishery has led to studies on the feasibility of capturing Greenland halibut with baited pots. In this study, catch rates among six experimental pots are compared. In addition to this, underwater video observations of Greenland halibut interacting with two of these experimental pot types are quantified in order to help provide recommendations on future pot designs. Catch rates of Greenland halibut differed among pots with different entrance mesh types, and none of the pots produced substantial amounts of bycatch. Strings of pots were deployed within a narrow corridor between baited gillnets targeting Greenland halibut, which may have affected catch results. Video observations revealed Greenland halibut entangled by their teeth significantly more often in entrance funnels constructed with 50 mm than with 19 mm clear monofilament netting and the entrance rate was 45% higher with the 19 mm netting. Greenland halibut that successfully entered a pot repeatedly became entangled by their teeth in 58 mm netting used in the side and end panels and in a horizontal panel used to separate the pot into a lower and upper chamber. The majority (80%) of Greenland halibut were observed to approach a pot against the current. The downstream entrance was aligned with the current in 52% of the observed Greenland halibut approaches. Seventy percent of entry attempts and 67% of successful entries occurred when fish approached against the current and when the entrance was aligned with the current. These observations lead to recommendations that future studies consider developing a four entrance pot to ensure an entrance is always aligned with bottom currents. Based on these observations of entanglements, it is recommended to use 19 mm clear monofilament netting in the entrance funnel, 100 mm polyethylene netting in the exterior panels, and 19 mm polypropylene netting in the horizontal panel when targeting Greenland halibut. Three Greenland sharks were observed interacting with the pots in the video sets, but none were captured or damaged the pots during the potting experiments, providing validity to the use of pots to mitigate the capture of Greenland shark in Nunavut territorial waters.


2021 ◽  
Vol 8 (1) ◽  
pp. 74-83
Author(s):  
Darcy G. Mc Nicholl ◽  
Les N. Harris ◽  
Tracey Loewen ◽  
Peter May ◽  
Lilian Tran ◽  
...  

Abstract Arctic marine ecosystems are changing, one aspect of which appears to be distributional expansions of sub-arctic species. For Arctic marine systems, there is limited occurrence information for many species, especially those found in restricted habitats (e.g., ice-covered, far north, or deep-water). Increasing observations through on-going Fisheries and Oceans Canada (DFO) community-based monitoring programs (e.g., Arctic Coast, Cambridge Bay Arctic Char stock assessment, Arctic Salmon, and Kugluktuk coastal surveys), community observation networks, and local media have augmented opportunities to document new occurrences of marine fishes. Combined data from historical records and contemporary observations at the local scale can then delineate these among three types of occurrences: gradual distributional expansion, episodic vagrants, and rare endemics. Here we document nine occurrences of unusual sightings across six fish species (Pink Salmon Oncorhynchus gorbuscha, Bering Wolffish Anarhichas orientalis, Greenland Shark Somniosus microcephalus, Broad Whitefish Coregonus nasus, Banded Gunnel Pholis fasciata and Salmon Shark Lamna ditropis) from six northern Canadian communities and classify the nature of each observation as rare, vagrant, or expanding distributions. Uniting scientific and local observations represents a novel approach to monitor distributional changes suitable for a geographically large but sparsely populated area such as the Canadian Arctic. The new occurrences are important for discerning the potential effects of the presence of these species in Arctic ecosystems. These observations more broadly will build on our understanding of northern biodiversity change associated with warming Arctic environments.


2021 ◽  
Author(s):  
◽  
Niklas Maximilian Löffler

This Ph.D. thesis demonstrates i) the highly precise performance of refined and new analytical setups for clumped isotope analysis (Δ47 and Δ48) and ii) the applicability of clumped isotope analyses to biogenic and abiogenic carbonated apatite (Δ47) and abiogenic carbonates (Δ47 and Δ48) for research related to paleothermophysiology and paleoclimatology, whereas the overall analytical precision has been increased. A comprehensive Δ47 dataset with 122 replicate analyses is provided from which the temperature dependence of Δ47 for (bio)apatite (Δ47-1/T2) is calculated between 1 °C and 80 °C. The temperature dependence of oxygen isotope equilibrium fractionation between carbonated synthetic apatite and water (1,000ln(αCHAP-H2O)) is experimentally determined. When applied to tooth enameloid from a modern Greenland shark (Somniosus microcephalus), a Late Miocene megatooth shark (Carcharodon megalodon), and an Upper Cretaceous Tyrannosaurus rex, reconstructed Δ47-based temperatures and δ18OH2O are in line with previously published data. An analytical setup for highly precise clumped isotope analysis is described that allows for the simultaneous measurement of ∆47 and ∆48 in CO2 with external reproducibilities close to the respective shot-noise limits. The analyte gases originate from pure carbonates that were digested in hypersaturated orthophosphoric acid and purified using a fully automated device. Δ47 data sets with 117 replicate analyses in total on 22 pedogenic carbonate nodules from two Spanish Middle Miocene sections reveal the continental Southern European thermal structure during the end of the Middle Miocene Climatic Optimum (MCO) and the complete Middle Miocene Climatic Transition (MMCT; from 15.33 to 12.98 Ma).


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10407
Author(s):  
Scott M. Grant ◽  
Jenna G. Munden ◽  
Kevin J. Hedges

The Greenland shark (Somniosus microcephalus) is the main bycatch species in established and exploratory inshore longline fisheries for Greenland halibut (Reinhardtius hippoglossoides) on the east coast of Baffin Island, Canada. Bycatch and entanglement in longline gear has at times been substantial and post-release survival is questionable when Greenland sharks are released with trailing fishing gear. This study investigated the effect of the type of fishing line used in the gangion and gangion breaking strength on catch rates of Greenland shark and Greenland halibut in bottom set longlines. Circle (size 14/0, 0° offset) hooks were used throughout the study. Behavior of captured sharks, mode of capture (i.e., jaw hook and/or entanglement), level of entanglement in longline gear, time required to disentangle sharks and biological information (sex, body length and health status) were recorded. Catch rates of Greenland shark were independent of monofilament nylon gangion breaking strength and monofilament gangions captured significantly fewer Greenland sharks than the traditional braided multifilament nylon gangion. Catch rates and body size of Greenland halibut did not differ significantly between gangion treatments. Although most (84%) of the Greenland sharks were hooked by the jaw, a high percentage (76%) were entangled in the mainline. The mean length of mainline entangled around the body and/or caudal peduncle and caudal fin was 28.7 m. Greenland sharks exhibited cannibalistic behavior with 15% of captured sharks cannibalized. All remaining sharks were alive and survived the disentanglement process which can be attributed to their lethargic behavior and lack of resistance when hauled to the surface. Thus, as a conservation measure fishers should be encouraged to remove trailing fishing gear prior to release. Our results are used to demonstrate benefits to the fishing industry with regard to an overall reduction in the period of time to disentangle sharks and damage to fishing gear by switching from braided multifilament to monofilament gangions in Greenland halibut longline fisheries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eric Ste-Marie ◽  
Yuuki Y. Watanabe ◽  
Jayson M. Semmens ◽  
Marianne Marcoux ◽  
Nigel E. Hussey

Abstract Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.


Sign in / Sign up

Export Citation Format

Share Document