scholarly journals S higella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation

2013 ◽  
Vol 87 (3) ◽  
pp. 690-706 ◽  
Author(s):  
A. Dorothea Roehrich ◽  
Enora Guillossou ◽  
Ariel J. Blocker ◽  
Isabel Martinez‐Argudo
2006 ◽  
Vol 19 (11) ◽  
pp. 1159-1166 ◽  
Author(s):  
Xiaoyan Tang ◽  
Yanmei Xiao ◽  
Jian-Min Zhou

The type III secretion system (TTSS) is a specialized protein secretion machinery used by numerous gram-negative bacterial pathogens of animals and plants to deliver effector proteins directly into the host cells. In plant-pathogenic bacteria, genes encoding the TTSS were discovered as hypersensitive response and pathogenicity (hrp) genes, because mutation of these genes typically disrupts the bacterial ability to cause diseases on host plants and to elicit hypersensitive response on nonhost plants. The hrp genes and the type III effector genes (collectively called TTSS genes hereafter) are repressed in nutrient-rich media but induced when bacteria are infiltrated into plants or incubated in nutrient-deficient inducing media. Multiple regulatory components have been identified in the plant-pathogenic bacteria regulating TTSS genes under various conditions. In Ralstonia solanacearum, several signal transduction components essential for the induction of TTSS genes in plants are dispensable for the induction in inducing medium. In addition to the inducing signals, recent studies indicated the presence of negative signals in the plant regulating the Pseudomonas syringae TTSS genes. Thus, the levels of TTSS gene expression in plants likely are determined by the interactions of multiple signal transduction pathways. Studies of the hrp regulons indicated that TTSS genes are coordinately regulated with a number of non-TTSS genes.


2006 ◽  
Vol 31 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Hua Zhu ◽  
Tim C.R. Conibear ◽  
Rani Bandara ◽  
Yulina Aliwarga ◽  
Fiona Stapleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document