scholarly journals A new avirulence gene of Leptosphaeria maculans , AvrLm14 , identifies a resistance source in American broccoli ( Brassica oleracea ) genotypes

2021 ◽  
Author(s):  
Alexandre Degrave ◽  
Marine Wagner ◽  
Pierre George ◽  
Laurent Coudard ◽  
Xavier Pinochet ◽  
...  

Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 791-791 ◽  
Author(s):  
A. Dilmaghani ◽  
M. H. Balesdent ◽  
T. Rouxel ◽  
O. Moreno-Rico

Broccoli (Brassica oleracea var. italica), cauliflower (B. oleracea var. botrytis), and cabbage (B. oleracea var. capitata) have been grown in central Mexico since 1970, with 21,000 ha cropped in 2001. In contrast, areas grown with oilseed rape (B. napus) are very limited in Mexico (<8,000 ha). Blackleg, a destructive disease of B. napus in most parts of the world, was first observed in Mexico in Zacatecas and Aguascalientes in 1988 on B. oleracea, causing as much as 70% yield loss. A species complex of two closely related Dothideomycete species, Leptosphaeria maculans and L. biglobosa, is associated with this disease of crucifers (1), but leaf symptoms on susceptible plants are different, with L. maculans typically causing >15-mm pale gray lesions with numerous pycnidia, whereas L. biglobosa causes dark and smaller lesions only containing a few pycnidia. Having a similar epidemiology, both species can be present on the same plants at the same time, and symptom confusion can occur as a function of the physiological condition of the plant or expression of plant resistance responses. A total of 209 isolates from symptomatic B. oleracea leaves were collected from three fields in central states of Mexico (58 to 71 isolates per location). All leaves showed similar symptoms, including a 10- to 15-mm tissue collapse with an occasional dark margin. Cotyledons of seven B. napus differentials were inoculated with conidia of all the isolates as described by Dilmaghani et al. (1). Two hundred isolates caused tissue collapse typical of L. maculans. However, nine obtained from white cabbage in a single location in Aguascalientes caused <5-mm dark lesions. When inoculated onto cotyledons of three B. oleracea genotypes commonly grown in Mexico (cvs. Domador, Monaco, and Iron Man), the nine isolates caused a range of symptoms characterized by tissue collapse (maximum 10 to 15 mm), showing the presence of patches of black necrotic spots within the collapse. The occasional presence of a few pycnidia allowed us to reisolate the fungus for molecular identification. ITS1-5.8S-ITS2, (internal transcribed spacers and 5.8S rDNA), actin, and β-tubulin sequences were obtained as described previously (4). Multiple gene genealogies based on these sequence data showed two subclades of L. biglobosa: L. biglobosa ‘occiaustralensis’ (one isolate; ITS [AM410082], actin [AM410084], and β-tubulin [AM410083]) and L. biglobosa ‘canadensis’ (eight isolates; ITS [AJ550868], actin [AY748956], and β-tubulin [AY749004]) (3,4), which were previously described on B. napus in the United States, Canada, and Chile. To our knowledge, this is the first report of L. biglobosa in Mexico. Previously, this species has only been reported once on B. oleracea without discrimination into subclades (2). In the Aguascalientes sampling, 24% of the isolates were L. biglobosa, similar to Canadian locations where this species is still common as compared with L. maculans (1). The large proportion of sampled L. biglobosa ‘canadensis’, highlights the prevalence of this subclade throughout the American continent (1). References: (1) A. Dilmaghani et al. Plant Pathol. 58:1044, 2009. (2) E. Koch et al. Mol. Plant-Microbe Interact. 4:341, 1991. (3) E. Mendes-Pereira et al. Mycol Res. 107:1287, 2003. (4) L. Vincenot et al. Phytopathology 98:321, 2008.



Author(s):  
E. Punithalingam

Abstract A description is provided for Leptosphaeria maculans. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Brassica spp. ; Brassica oleracea, B. rapa and B. napobrassica and other Cruciferae. DISEASE: Variously known as canker, dry rot and black leg, mainly of Brassica oleracea, B. rapa and B. napobrassica. Several cruciferous genera are attacked. The first symptoms are seen on seedlings as pale lesions on the stem, cotyledons and first true leaves. These become greyish with the pycnidia developing in their centres. On older plants in the field lesions on the leaves and other above-ground parts often have purplish margins. The stem, root and bulb are attacked causing necrotic, girdling cankers and transverse splits; severe infection of stem or root leads to wilt or the plant toppling over. Pycnidia develop abundantly on all infected areas. The perfect state has been reported from Australia, Canada, England and the Republic of Ireland (44, 65; 45, 1568; 48, 51). GEOGRAPHICAL DISTRIBUTION: Widespread but mostly in temperate regions (CMI Map 73 ed. 3, 1969). Records not yet mapped are: Australia (NT), Brazil, Costa Rica, Salvador, USSR (Ukraine). TRANSMISSION: The seed is invaded, dormant mycelium forming beneath the seed coat (11: 489; 19: 58). A recent survey in Denmark (48, 2641) showed seed of B. oleracea var. capitata to be most frequently infected and a longevity of 3 yr 8 months reported. From New Zealand a longevity of 14 months was found (39: 200). Seed treatment for control of conidial infection has led to the recognition that the disease may also be introduced by air-borne ascospores from host debris (42: 62; 49, 1822; 50, 2027). A persistence of 3 yr in soil organic matter can occur (9: 218; 29: 448).



2002 ◽  
Vol 15 (7) ◽  
pp. 672-682 ◽  
Author(s):  
Agnès Attard ◽  
Lilian Gout ◽  
Mathieu Gourgues ◽  
Marie-Line Kühn ◽  
Jacques Schmit ◽  
...  

Map-based cloning of the avirulence gene AvrLm1 of Leptosphaeria maculans was initiated utilizing a genetic map of the fungus and a BAC library constructed from an AvrLm1 isolate. Seven polymorphic DNA markers closely linked to AvrLm1 were identified. Of these, two were shown to border the locus on its 5′ end and were present, with size polymorphism, in both the virulent and the avirulent isolates. In contrast, three markers, J19-1.1, J53-1.3 (in coupling phase with avirulence), and Vir1 (in repulsion phase with avirulence), cosegregated with AvrLm1 in 312 progeny from five in vitro crosses. J19-1.1 and J53-1.3 were never amplified in the virulent parents or progeny, whereas Vir1 was never amplified in the avirulent parents or progeny. J19-1.1 and J53-1.3 were shown to be separated by 40 kb within a 184-kb BAC contig. In addition, the 1.6-cM genetic distance between J53-1.3 and the nearest recombinant marker corresponded to a 121-kb physical distance. When analyzing a European Union-wide collection of 192 isolates, J53-1.3, J19-1.1, and Vir1 were found to be closely associated with the AvrLm1 locus. The results of polymerase chain reaction amplification with primers for the three markers were in accordance with the interaction phenotype for 92.2% (J53-1.3), 90.6% (J19-1.1), and 88.0% (Vir1) of the isolates. In addition, genome organization of the AvrLm1 region was highly conserved in field isolates, because 89.1% of the avirulent isolates and 79.0% of the virulent isolates showed the same association of markers as that of the parents of in vitro crosses. The large-scale analysis of field isolates with markers originating from the genetic map therefore confirms (i) the physical proximity between the markers and the target locus and (ii) that AvrLm1 is located in (or close to) a recombination-deficient genome region. As a consequence, map-based markers provided us with high-quality markers for an overview of the occurrence of race “AvrLm1” at the field scale. These data were used to propose hypotheses on evolution towards virulence in field isolates.



1998 ◽  
Vol 88 (10) ◽  
pp. 1068-1072 ◽  
Author(s):  
Patchara Pongam ◽  
Thomas C. Osborn ◽  
Paul H. Williams

A gene-for-gene interaction was previously suggested by mapping of a single major locus (LEM 1) controlling cotyledon resistance to Leptosphaeria maculans isolate PHW1245 in Brassica napus cv. Major. In this study, we obtained further evidence of a gene-for-gene interaction by studying the inheritance of the corresponding avirulence gene in L. maculans isolate PHW1245. The analysis of segregating F1 progenies and 14 test crosses suggested that a single major gene is involved in the interaction. This putative avirulence gene was designated alm1 after the resistance locus identified in B. napus. Amplified fragment length polymorphism (AFLP) markers were used to generate a rudimentary genetic linkage map of the L. maculans genome and to locate markers linked to the putative avirulence locus. Two flanking AFLP markers, AC/TCC-1 and AC/CAG-5, were linked to alm1 at 3.1 and 8.1 cM, respectively. Identification of markers linked to the avirulence gene indicated that the differential interaction is controlled by a single gene difference between parental isolates and provides further support for the gene-for-gene relationship in the Leptosphaeria-Brassica system.



2011 ◽  
Vol 124 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Kaveh Ghanbarnia ◽  
Derek J. Lydiate ◽  
S. Roger Rimmer ◽  
Genyi Li ◽  
H. Randy Kutcher ◽  
...  


2001 ◽  
Vol 91 (1) ◽  
pp. 70-76 ◽  
Author(s):  
M. H. Balesdent ◽  
A. Attard ◽  
D. Ansan-Melayah ◽  
R. Delourme ◽  
M. Renard ◽  
...  

Leptosphaeria maculans causes blackleg of oilseed rape. Gene-for-gene interactions between race PG3 and Brassica napus cv. Quinta were related to interaction between the fungal avirulence (Avr) gene AvrLm1 and the corresponding resistance gene Rlm1. AvrLm1 isolates were aviru-lent on cvs. Doublol, Vivol, Columbus, and Capitol, and no recombinant phenotypes were observed in the progeny of two AvrLm1 × avrLm1 crosses, suggesting that all of these cultivars may possess Rlm1 or genes displaying the same recognition spectrum, or that a cluster of Avr genes is present at the Avrlm1 locus. In one cross, segregation distortion was observed at the AvrLm1 locus that could be explained by interaction between AvrLm1 and one unlinked deleterious gene, termed Del1. Incompatibility toward cvs. Jet Neuf and Darmor.bzh was governed by a single gene, unlinked to AvrLm1 or Del1. This avirulence gene was termed AvrLm4. Preliminary plant genetic analysis suggested the occurrence of a corresponding dominant resistance gene, termed Rlm4, present in the Quinta line analyzed and linked to Rlm1.



2017 ◽  
Vol 19 (4) ◽  
pp. 1012-1016 ◽  
Author(s):  
Clémence Plissonneau ◽  
Thierry Rouxel ◽  
Anne-Marie Chèvre ◽  
Angela P. Van De Wouw ◽  
Marie-Hélène Balesdent


2020 ◽  
Author(s):  
Ting Xiang Neik ◽  
Kaveh Ghanbarnia ◽  
Bénédicte Ollivier ◽  
Armin Scheben ◽  
Anita Severn-Ellis ◽  
...  

SummaryLeptosphaeria maculans, the causal agent of blackleg disease, interacts with Brassica napus (oilseed rape, canola) in a gene-for-gene manner. The avirulence genes AvrLmS and AvrLep2 were described to be perceived by the resistance genes RlmS and LepR2, respectively, present in the cultivar Surpass 400. Here we report cloning of AvrLmS and AvrLep2 using two independent methods. AvrLmS was cloned using combined in vitro crossing between avirulent and virulent isolates with sequencing of DNA bulks from avirulent or virulent progeny (Bulked-Segregant-Sequencing) to rapidly identify one candidate avirulence gene present in the effector repertoire of L. maculans. AvrLep2 was cloned using a bi-parental cross of avirulent and virulent L. maculans isolates and a classical map-based cloning approach. Taking these two approaches independently, we found that AvrLmS and AvrLep2 are the same gene. Complementation of virulent isolates with this gene confirmed its role in inducing resistance on Surpass 400 and Topas-LepR2. The gene renamed AvrLmS-Lep2 encodes for a small cysteine-rich protein of unknown function with an N-terminal secretory signal peptide, which are common features of the majority of effectors from extracellular fungal plant pathogens. The AvrLmS-Lep2 / LepR2 interaction phenotype was found to vary from a typical hypersensitive response to intermediate resistance sometimes at the edge of, or evolving toward, susceptibility depending on the inoculation conditions. AvrLmS-Lep2 was nevertheless sufficient to significantly reduce the stem lesion size on plant genotypes with LepR2, indicating the potential efficiency of this resistance to control the disease in the field.



Gene Reports ◽  
2020 ◽  
Vol 19 ◽  
pp. 100598 ◽  
Author(s):  
Mostari Jahan Ferdous ◽  
Mohammad Rashed Hossain ◽  
Jong-In Park ◽  
Arif Hasan Khan Robin ◽  
Sathishkumar Natarajan ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document