Centrally Administered Neuropeptide‐S Alleviates Gastrointestinal Dysmotility Induced by Neonatal Maternal Separation

Author(s):  
Mehmet Bülbül ◽  
Osman Sinen
2008 ◽  
Vol 32 (9) ◽  
pp. 1355-1362 ◽  
Author(s):  
V Ryu ◽  
J-H Lee ◽  
S B Yoo ◽  
X F Gu ◽  
Y W Moon ◽  
...  

2005 ◽  
Vol 99 (1) ◽  
pp. 189-196 ◽  
Author(s):  
Richard Kinkead ◽  
Roumiana Gulemetova ◽  
Aida Bairam

In awake animals, our laboratory recently showed that the hypoxic ventilatory response of adult male (but not female) rats previously subjected to neonatal maternal separation (NMS) is 25% greater than controls (Genest SE, Gulemetova R, Laforest S, Drolet G, and Kinkead R. J Physiol 554: 543–557, 2004). To begin mechanistic investigations of the effects of this neonatal stress on respiratory control development, we tested the hypothesis that, in male rats, NMS enhances central integration of carotid body chemoafferent signals. Experiments were performed on two groups of adult male rats. Pups subjected to NMS were placed in a temperature-controlled incubator 3 h/day from postnatal day 3 to postnatal day 12. Control pups were undisturbed. At adulthood (8–10 wk), rats were anesthetized (urethane; 1.6 g/kg), paralyzed, and ventilated with a hyperoxic gas mixture [inspired O2 fraction (FiO2) = 0.5], and phrenic nerve activity was recorded. The first series of experiments aimed to demonstrate that NMS-related enhancement of the inspiratory motor output (phrenic) response to hypoxia occurs in anesthetized animals also. In this series, rats were exposed to moderate, followed by severe, isocapnic hypoxia (FiO2 = 0.12 and 0.08, respectively, 5 min each). NMS enhanced both the frequency and amplitude components of the phrenic response to hypoxia relative to controls, thereby validating the use of this approach. In a second series of experiments, NMS increased the amplitude (but not the frequency) response to unilateral carotid sinus nerve stimulation (stimulation frequency range: 0.5–33 Hz). We conclude that enhancement of central integration of carotid body afferent signal contributes to the larger hypoxic ventilatory response observed in NMS rats.


Sign in / Sign up

Export Citation Format

Share Document