adolescent rats
Recently Published Documents


TOTAL DOCUMENTS

657
(FIVE YEARS 136)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 15 ◽  
Author(s):  
Yiwen Chen ◽  
Yuanjia Zheng ◽  
Jinglan Yan ◽  
Chuanan Zhu ◽  
Xuan Zeng ◽  
...  

Early life stress is thought to be a risk factor for emotional disorders, particularly depression and anxiety. Although the excitation/inhibition (E/I) imbalance has been implicated in neuropsychiatric disorders, whether early life stress affects the E/I balance in the medial prefrontal cortex at various developmental stages is unclear. In this study, rats exposed to maternal separation (MS) that exhibited a well-established early life stress paradigm were used to evaluate the E/I balance in adolescence (postnatal day P43–60) and adulthood (P82–100) by behavior tests, whole-cell recordings, and microdialysis coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. First, the behavioral tests revealed that MS induced both anxiety- and depressive-like behaviors in adolescent rats but only depressive-like behavior in adult rats. Second, MS increased the action potential frequency and E/I balance of synaptic transmission onto L5 pyramidal neurons in the prelimbic (PrL) brain region of adolescent rats while decreasing the action potential frequency and E/I balance in adult rats. Finally, MS increases extracellular glutamate levels and decreased the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) of pyramidal neurons in the PrL of adolescent rats. In contrast, MS decreased extracellular glutamate levels and increased the paired-pulse ratio of evoked EPSCs of pyramidal neurons in the PrL of adult rats. The present results reveal a key role of E/I balance in different MS-induced disorders may related to the altered probability of presynaptic glutamate release at different developmental stages.


2021 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Mitchell A. Head ◽  
Laura K. McColl ◽  
Anica Klockars ◽  
Allen S. Levine ◽  
Pawel K. Olszewski

A recent case report has shown that an adjunctive oxytocin + naltrexone (OT + NTX) treatment promoted more robust hypophagia and body weight reduction than OT alone in an adolescent male with hypothalamic obesity after craniopharyngioma resection. Thus far, there has been no basic research in adolescent laboratory animals that would examine whether the benefit of OT + NTX on appetite extends onto adolescent individuals without surgically induced overeating. Thus, here we examined whether low doses of combined OT + NTX acutely affect post-deprivation intake of energy-dense, standard chow; intake of energy-dense and palatable high-fat high-sugar (HFHS) diet; or calorie-dilute, palaTable 10% sucrose solution without deprivation in adolescent male rats. We assessed whether OT + NTX decreases water intake after water deprivation or produces a conditioned taste aversion (CTA). Finally, by using c-Fos immunoreactivity, we determined changes in activity of feeding-related brain areas after OT + NTX. We found that individual subthreshold doses of OT and NTX decreased feeding induced by energy and by palatability. Significant c-Fos changes were noted in the arcuate and dorsomedial hypothalamic nuclei. The hypophagic doses of OT + NTX did not suppress water intake in thirsty rats and did not cause a CTA, which suggests that feeding reduction is not a secondary effect of gastrointestinal discomfort or changes in thirst processing. We conclude that OT + NTX is an effective drug combination to reduce appetite in adolescent male rats.


2021 ◽  
Author(s):  
Jocelyn Breton ◽  
Jordan S. Eisner ◽  
Vaidehi S. Gandhi ◽  
Natalie Musick ◽  
Aileen Zhang ◽  
...  

Prosocial behavior, in particular helping others in need, occurs preferentially in response to the perceived distress of one's own group members, or ingroup. The development of neural mechanisms underlying social selectivity towards ingroup members are not well established. Here, we used a rat helping behavior test to explore the development and neural basis of ingroup bias for prosocial behavior in adolescent rats. We previously found that adult rats selectively help others from their own social group, and that this selectivity is associated with activation in reward and motivation circuits. Surprisingly, we found that adolescent rats helped both ingroup and outgroup members, evidence suggesting that ingroup bias emerges in adulthood. Analysis of brain-wide neural activity, indexed by expression of the early-immediate gene c-Fos, revealed increased activity for ingroup members across a broad set of regions, which was congruent for adults and adolescents. However, adolescents showed reduced hippocampal and insular activity, and increased orbitofrontal cortex activity compared to adults. Adolescent rats who did not help trapped others also demonstrated increased amygdala connectivity. Together, these findings demonstrate that biases for group-dependent prosocial behavior develop with age in rats and suggest that specific brain regions contribute to this prosocial selectivity, overall pointing to possible targets for the functional modulation of ingroup bias.


2021 ◽  
Vol 53 ◽  
pp. S143-S144
Author(s):  
K.C. Creutzberg ◽  
F. Marchisella ◽  
V. Begni ◽  
L.E. Wearick-Silva ◽  
R. Orso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document