Symplesiomorphies in theWUSCHELclade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches

2013 ◽  
Vol 199 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
Judith Nardmann ◽  
Wolfgang Werr
1994 ◽  
Vol 91 (11) ◽  
pp. 5163-5167 ◽  
Author(s):  
L. Savard ◽  
P. Li ◽  
S. H. Strauss ◽  
M. W. Chase ◽  
M. Michaud ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evy van Berlo ◽  
Alejandra P. Díaz-Loyo ◽  
Oscar E. Juárez-Mora ◽  
Mariska E. Kret ◽  
Jorg J. M. Massen

AbstractYawning is highly contagious, yet both its proximate mechanism(s) and its ultimate causation remain poorly understood. Scholars have suggested a link between contagious yawning (CY) and sociality due to its appearance in mostly social species. Nevertheless, as findings are inconsistent, CY’s function and evolution remains heavily debated. One way to understand the evolution of CY is by studying it in hominids. Although CY has been found in chimpanzees and bonobos, but is absent in gorillas, data on orangutans are missing despite them being the least social hominid. Orangutans are thus interesting for understanding CY’s phylogeny. Here, we experimentally tested whether orangutans yawn contagiously in response to videos of conspecifics yawning. Furthermore, we investigated whether CY was affected by familiarity with the yawning individual (i.e. a familiar or unfamiliar conspecific and a 3D orangutan avatar). In 700 trials across 8 individuals, we found that orangutans are more likely to yawn in response to yawn videos compared to control videos of conspecifics, but not to yawn videos of the avatar. Interestingly, CY occurred regardless of whether a conspecific was familiar or unfamiliar. We conclude that CY was likely already present in the last common ancestor of humans and great apes, though more converging evidence is needed.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Matt L. Donne ◽  
Andrew J. Lechner ◽  
Jason R. Rock

2009 ◽  
Vol 21 (5) ◽  
pp. 623-629 ◽  
Author(s):  
Karine Raymond ◽  
Marie-Ange Deugnier ◽  
Marisa M Faraldo ◽  
Marina A Glukhova
Keyword(s):  

2015 ◽  
Vol 112 (29) ◽  
pp. 9070-9075 ◽  
Author(s):  
Purushottam D. Dixit ◽  
Tin Yau Pang ◽  
F. William Studier ◽  
Sergei Maslov

An approximation to the ∼4-Mbp basic genome shared by 32 strains ofEscherichia colirepresenting six evolutionary groups has been derived and analyzed computationally. A multiple alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ∼90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single base-pair mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly between genomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome pairs have one or two recombinant transfers of length ∼40–115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.4–1% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kilobase pairs. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. Most recombinant transfers seem likely to be due to generalized transduction by coevolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.


2021 ◽  
Author(s):  
Ksenia Juravel ◽  
Luis Porras ◽  
Sebastian Hoehna ◽  
Davide Pisani ◽  
Gert Wörheide

An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although multi-gene alignments of up to several hundred thousand amino acids are nowadays routinely used to test hypotheses of animal relationships, some nodes towards the root of the animal phylogeny are proving hard to resolve. While the relationships of the non-bilaterian lineages, primarily sponges (Porifera) and comb jellies (Ctenophora), have received much attention since more than a decade, controversies about the phylogenetic position of the worm-like bilaterian lineage Xenacoelomorpha and the monophyly of the "Superphylum" Deuterostomia have more recently emerged. Here we independently analyse novel genome gene content and morphological datasets to assess patterns of phylogenetic congruence with previous amino-acid derived phylogenetic hypotheses. Using statistical hypothesis testing, we show that both our datasets very strongly support sponges as the sister group of all the other animals, Xenoacoelomorpha as the sister group of the other Bilateria, and largely support monophyletic Deuterostomia. Based on these results, we conclude that the last common animal ancestor may have been a simple, filter-feeding organism without a nervous system and muscles, while the last common ancestor of Bilateria might have been a small, acoelomate-like worm without a through gut.


Sign in / Sign up

Export Citation Format

Share Document