A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity

2021 ◽  
Author(s):  
Xiangxiu Liang ◽  
Yazhou Bao ◽  
Meixiang Zhang ◽  
Dandan Du ◽  
Shaofei Rao ◽  
...  
Author(s):  
Tianli Li ◽  
Gan Ai ◽  
Xiaowei Fu ◽  
Jin Liu ◽  
Hai Zhu ◽  
...  

The oomycete pathogen Phytophthora capsici encodes hundreds of RXLR effectors to enter plant cells and suppress host defense responses. Only few of them are conserved across different strains and species. Such ‘core effectors’ may target hub immunity pathways that are essential during Phytophthora pathogens interacting with their hosts. However, the underlying mechanisms of core RXLRs-mediated host immunity manipulation are largely unknown. Here, we report the functional characterization of a P. capsici RXLR effector, RXLR242. RXLR242 expression is highly induced during the infection process. Its ectopic expression in Nicotiana benthamiana promotes Phytophthora infection. RXLR242 physically interacts with a group of RAB proteins, which belong to the small GTPase family and function in specifying transport pathways in the intracellular membrane trafficking system. RXLR242 impedes the secretion of PATHOGENESIS-RELATED 1 (PR1) protein to the apoplast by interfering the formation of RABE1-7-labeled vesicles. Further analysis indicated that such phenomenon is resulted from competitive binding of RXLR242 to RABE1-7. RXLR242 also interferes trafficking of the membrane-located receptor FLAGELLIN-SENSING 2 (FLS2) through competitively interacting with RABA4-3. Taken together, our work demonstrates that RXLR242 manipulates plant immunity by targeting RAB proteins and disturbing vesicle-mediated protein transporting pathway in plant hosts.


2019 ◽  
Vol 32 (8) ◽  
pp. 986-1000 ◽  
Author(s):  
Xiao-Ren Chen ◽  
Ye Zhang ◽  
Hai-Yang Li ◽  
Zi-Hui Zhang ◽  
Gui-Lin Sheng ◽  
...  

Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad–host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.


2020 ◽  
Vol 21 (4) ◽  
pp. 502-511 ◽  
Author(s):  
Qi Li ◽  
Ji Wang ◽  
Tian Bai ◽  
Ming Zhang ◽  
Yuling Jia ◽  
...  

2020 ◽  
Vol 229 (1) ◽  
pp. 501-515 ◽  
Author(s):  
Yu Du ◽  
Xiaokang Chen ◽  
Yalu Guo ◽  
Xiaojiang Zhang ◽  
Houxiao Zhang ◽  
...  

2015 ◽  
pp. pp.01169.2015 ◽  
Author(s):  
Yu Du ◽  
Mohamed H Mpina ◽  
Paul R. J. Birch ◽  
Klaas Bouwmeester ◽  
Francine Govers

2020 ◽  
Author(s):  
Sarah Harvey ◽  
Priyanka Kumari ◽  
Dmitry Lapin ◽  
Thomas Griebel ◽  
Richard Hickman ◽  
...  

AbstractHyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen’s advantage. One class of oomycete effectors share a conserved ‘RxLR’ motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009388
Author(s):  
Gan Ai ◽  
Qingyue Xia ◽  
Tianqiao Song ◽  
Tianli Li ◽  
Hai Zhu ◽  
...  

Phytophthora genomes encode a myriad of Crinkler (CRN) effectors, some of which contain putative kinase domains. Little is known about the host targets of these kinase-domain-containing CRNs and their infection-promoting mechanisms. Here, we report the host target and functional mechanism of a conserved kinase CRN effector named CRN78 in a notorious oomycete pathogen, Phytophthora sojae. CRN78 promotes Phytophthora capsici infection in Nicotiana benthamiana and enhances P. sojae virulence on the host plant Glycine max by inhibiting plant H2O2 accumulation and immunity-related gene expression. Further investigation reveals that CRN78 interacts with PIP2-family aquaporin proteins including NbPIP2;2 from N. benthamiana and GmPIP2-13 from soybean on the plant plasma membrane, and membrane localization is necessary for virulence of CRN78. Next, CRN78 promotes phosphorylation of NbPIP2;2 or GmPIP2-13 using its kinase domain in vivo, leading to their subsequent protein degradation in a 26S-dependent pathway. Our data also demonstrates that NbPIP2;2 acts as a H2O2 transporter to positively regulate plant immunity and reactive oxygen species (ROS) accumulation. Phylogenetic analysis suggests that the phosphorylation sites of PIP2 proteins and the kinase domains of CRN78 homologs are highly conserved among higher plants and oomycete pathogens, respectively. Therefore, this study elucidates a conserved and novel pathway used by effector proteins to inhibit host cellular defenses by targeting and hijacking phosphorylation of plant aquaporin proteins.


2018 ◽  
Vol 11 (8) ◽  
pp. 1067-1083 ◽  
Author(s):  
Guangjin Fan ◽  
Yang Yang ◽  
Tingting Li ◽  
Wenqin Lu ◽  
Yu Du ◽  
...  

2014 ◽  
Vol 27 (8) ◽  
pp. 770-780 ◽  
Author(s):  
Julio C. Vega-Arreguín ◽  
Abubakar Jalloh ◽  
Jorunn I. Bos ◽  
Peter Moffett

Nonhost resistance is a commonly occurring phenomenon wherein all accessions or cultivars of a plant species are resistant to all strains of a pathogen species and is likely the manifestation of multiple molecular mechanisms. Phytophthora capsici is a soil-borne oomycete that causes Phytophthora blight disease in many solanaceous and cucurbitaceous plants worldwide. Interest in P. capsici has increased considerably with the sequencing of its genome and its increasing occurrence in multiple crops. However, molecular interactions between P. capsici and both its hosts and its nonhosts are poorly defined. We show here that tobacco (Nicotiana tabacum) acts like a nonhost for P. capsici and responds to P. capsici infection with a hypersensitive response (HR). Furthermore, we have found that a P. capsici Avr3a-like gene (PcAvr3a1) encoding a putative RXLR effector protein produces a HR upon transient expression in tobacco and several other Nicotiana species. This HR response correlated with resistance in 19 of 23 Nicotiana species and accessions tested, and knock-down of PcAvr3a1 expression by host-induced gene silencing allowed infection of resistant tobacco. Our results suggest that many Nicotiana species have the capacity to recognize PcAvr3a1 via the products of endogenous disease resistance (R) genes and that this R gene–mediated response is a major component of nonhost resistance to P. capsici.


Sign in / Sign up

Export Citation Format

Share Document