scholarly journals FLA11 and FLA12 glycoproteins fine‐tune stem secondary wall properties in response to mechanical stresses

2021 ◽  
Author(s):  
Yingxuan Ma ◽  
Colleen P MacMillan ◽  
Lisanne de Vries ◽  
Shawn D Mansfield ◽  
Pengfei Hao ◽  
...  
2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2006 ◽  
Vol 5 (1) ◽  
pp. 11-12
Author(s):  
Z KOBALAVA ◽  
V MOISEEV ◽  
Y KOTOVSKAYA ◽  
G KIYAKBAEV ◽  
E OZOVA

1992 ◽  
Vol 68 (05) ◽  
pp. 589-594 ◽  
Author(s):  
Alon Margalit ◽  
Avinoam A Livne

SummaryHuman platelets exposed to hypotonicity undergo regulatory volume decrease (RVD), controlled by a potent, yet labile, lipoxygenase product (LP). LP is synthesized and excreted during RVD affecting selectively K+ permeability. LP is assayed by its capacity to reconstitute RVD when lipoxygenase is blocked. Centrifugation for preparing washed platelets (1,550 × g, 10 min) is sufficient to express LP activity, with declining potency in repeated centrifugations, indicating that it is not readily replenish-able. When platelet suspension flows in a vinyl tubing (1 mm i.d.), at physiological velocity, controlled at 90–254 cm/s, LP formation increases as a function of velocity but declines as result of increasing the tubing length. Stirring the platelets in an aggregometer cuvette for 30 s, yields no LP unless the stirring is intermittent. No associated platelet lysis or aggregation are observed following the mechanical stress applications. These results demonstrate that although mechanical stresses result in LP production, the mode of its application plays a major role. These results may indicate that LP is synthesized under pathological conditions and could be of relevance to platelets behavior related to arterial stenosis.


2013 ◽  
Vol 58 (9) ◽  
pp. 872-880 ◽  
Author(s):  
Smirnov A.B. Smirnov A.B. ◽  
◽  
Lytvyn O.S. Lytvyn O.S. ◽  
Morozhenko V.A. Morozhenko V.A. ◽  
Savkina R.K. Savkina R.K. ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 1-5
Author(s):  
Yoshitaka Miyajima ◽  
Eri Kuroiwa ◽  
Takuya Sonoyama ◽  
Shuji Yonekubo
Keyword(s):  

2014 ◽  
Author(s):  
S. I. Badusha ◽  
A. M. Qamber ◽  
S. Al-Rashdan ◽  
A. Safar ◽  
A. Mahato ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Kent O. Kirlikovali ◽  
Jonathan C. Axtell ◽  
Kierstyn Anderson ◽  
Peter I. Djurovich ◽  
Arnold L. Rheingold ◽  
...  

We report the synthesis of two isomeric Pt(II) complexes ligated by doubly deprotonated 1,1′-bis(<i>o</i>-carborane) (<b>bc</b>). This work provides a potential route to fine-tune the electronic properties of luminescent metal complexes by virtue of vertex-differentiated coordination chemistry of carborane-based ligands.


2018 ◽  
Vol 84 (7) ◽  
pp. 62-66
Author(s):  
K. V. Kurashkin

A method of ultrasonic control of the mechanical stresses which takes into account the heterogeneity of the material structure and does not require unloading of the structure or using reference samples is considered. The procedure is based on echo-method of measuring time of the bulk elastic wave propagation and determination of the relative values ν31 and ν32 related to the material structure and mechanical stresses. It is shown that stresses violate the linearity of the relationship observed between the parameters in the absence of the mechanical stresses in the rolled material. This effect formed a basis for developing a method of the deviator stress determination. The purpose of the study is to demonstrate the main advantages of the developed method against the known ultrasonic techniques used for evaluation of the mechanical stresses, give theoretical grounds to the effect which allows taking into account the heterogeneity of the material structure, and also to exemplify the procedure. An analytical expression is derived using bulk elastic wave velocity in an orthotropic material composed of cubic crystallites and an assumption on the existence of simple proportional relationship between the coefficients of the orientation distribution function in rolled metal. Presented results of the mathematical modeling confirm the experimentally observed linear dependence between the parameters ν31 and ν32 in the absence of mechanical stresses. The results of evaluating residual stresses in a welded steel plate are presented as an example of the applicability of the developed procedure. Data of ultrasonic technique and data of strain gage measurements are compared. The features of the described method of stress determination are marked and the applicability limits are specified.


Sign in / Sign up

Export Citation Format

Share Document