scholarly journals Relationship between Change in Bone Mineral Density of Lumbar Spine and Risk of New Vertebral and Nonvertebral Fractures: A Meta‐Analysis

2022 ◽  
Author(s):  
Liang Chen ◽  
Xiao‐ping Liu ◽  
Bo Zhou ◽  
Tong‐ya Guo ◽  
Feng Yuan ◽  
...  
2021 ◽  
Author(s):  
Phoebe Loxton ◽  
Kruthika Narayan ◽  
Craig F Munns ◽  
Maria E Craig

<u>Background</u> <p>There is substantial evidence that adults with type 1 diabetes have reduced bone mineral density (BMD), however findings in youth are inconsistent.</p> <p><u>Purpose</u></p> <p>Systematic review and meta-analysis of BMD in youth with type 1 diabetes using multiple modalities: dual energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) and/or quantitative ultrasound (QUS).</p> <p><u>Data Sources</u></p> <p>PubMed, Embase, Scopus and Web of Science from 01/01/1990 to 31/12/2020, limited to humans, without language restriction.</p> <p><u>Study Selection</u></p> <p>Inclusion criteria: cross sectional or cohort studies that included BMD measured either by DXA, pQCT and/or QUS in youth (age <20 years) with type 1 diabetes and matched controls. </p> <p><u>Data extraction</u></p> <p>Total body (TB), lumbar spine (LS) and femoral BMD (DXA); tibia, radius and lumbar spine (pQCT); and phalanx and calcaneum (QUS). Weighted mean difference (WMD) or standardized mean difference (SMD) were estimated and meta-regression was performed using age, diabetes duration and HbA1c as covariates.</p> <p><u>Data Synthesis </u></p> <p>We identified 1300 non-duplicate studies; 46 met the inclusion criteria, including 2617 cases and 3851 controls. Mean age was 12.6 ± 2.3 years. Youth with type 1 diabetes had lower BMD: TB (WMD -0.04 g/cm<sup>2</sup>, 95% CI -0.06 to -0.02, <i>P</i>=0.0006); LS (-0.02 g/cm<sup>2</sup>, -0.03 to -0.0, <i>P = 0.01</i>); femur (-0.04 g/cm<sup>2</sup>, -0.05 to -0.03, <i>P</i><0.00001); tibial trabecular (-11.32 g/cm<sup>3</sup>,-17.33 to -5.30, <i>P</i>=0.0002), radial trabecular (-0.91, -1.55 to -0.27, <i>P=0.005</i>); phalangeal (-0.32, -0.38 to -0.25, <i>P</i><0.00001) and calcaneal (SMD -0.69, -1.11 to -0.26, <i>P</i>=0.001). Using meta-regression TB BMD was associated with older age (coefficient -0.0063, -0.0095 to -0.0031, <i>P</i>=0.002), but not longer diabetes duration or HbA1c.</p> <p><u>Limitations</u></p> <p>Meta-analysis was limited by the small number of studies using QUS and pQCT and lack of use BMD z-scores in all studies. </p> <p><u>Conclusions</u></p> <p>Bone development is abnormal in youth with type 1 diabetes, assessed by multiple modalities. Routine assessment of BMD should be considered in all youth with type 1 diabetes.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chuan Qiu ◽  
Hui Shen ◽  
Xiaoying Fu ◽  
Chao Xu ◽  
Hongwen Deng

Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n=5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p<7.86×10−7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p<5.00×10−5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.


2021 ◽  
Author(s):  
Phoebe Loxton ◽  
Kruthika Narayan ◽  
Craig F Munns ◽  
Maria E Craig

<u>Background</u> <p>There is substantial evidence that adults with type 1 diabetes have reduced bone mineral density (BMD), however findings in youth are inconsistent.</p> <p><u>Purpose</u></p> <p>Systematic review and meta-analysis of BMD in youth with type 1 diabetes using multiple modalities: dual energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) and/or quantitative ultrasound (QUS).</p> <p><u>Data Sources</u></p> <p>PubMed, Embase, Scopus and Web of Science from 01/01/1990 to 31/12/2020, limited to humans, without language restriction.</p> <p><u>Study Selection</u></p> <p>Inclusion criteria: cross sectional or cohort studies that included BMD measured either by DXA, pQCT and/or QUS in youth (age <20 years) with type 1 diabetes and matched controls. </p> <p><u>Data extraction</u></p> <p>Total body (TB), lumbar spine (LS) and femoral BMD (DXA); tibia, radius and lumbar spine (pQCT); and phalanx and calcaneum (QUS). Weighted mean difference (WMD) or standardized mean difference (SMD) were estimated and meta-regression was performed using age, diabetes duration and HbA1c as covariates.</p> <p><u>Data Synthesis </u></p> <p>We identified 1300 non-duplicate studies; 46 met the inclusion criteria, including 2617 cases and 3851 controls. Mean age was 12.6 ± 2.3 years. Youth with type 1 diabetes had lower BMD: TB (WMD -0.04 g/cm<sup>2</sup>, 95% CI -0.06 to -0.02, <i>P</i>=0.0006); LS (-0.02 g/cm<sup>2</sup>, -0.03 to -0.0, <i>P = 0.01</i>); femur (-0.04 g/cm<sup>2</sup>, -0.05 to -0.03, <i>P</i><0.00001); tibial trabecular (-11.32 g/cm<sup>3</sup>,-17.33 to -5.30, <i>P</i>=0.0002), radial trabecular (-0.91, -1.55 to -0.27, <i>P=0.005</i>); phalangeal (-0.32, -0.38 to -0.25, <i>P</i><0.00001) and calcaneal (SMD -0.69, -1.11 to -0.26, <i>P</i>=0.001). Using meta-regression TB BMD was associated with older age (coefficient -0.0063, -0.0095 to -0.0031, <i>P</i>=0.002), but not longer diabetes duration or HbA1c.</p> <p><u>Limitations</u></p> <p>Meta-analysis was limited by the small number of studies using QUS and pQCT and lack of use BMD z-scores in all studies. </p> <p><u>Conclusions</u></p> <p>Bone development is abnormal in youth with type 1 diabetes, assessed by multiple modalities. Routine assessment of BMD should be considered in all youth with type 1 diabetes.</p>


Sign in / Sign up

Export Citation Format

Share Document