Double recurrence of double cancers: Rhabdomyosarcoma and secondary AML

2020 ◽  
Vol 62 (6) ◽  
pp. 742-744
Author(s):  
Naoki Kajita ◽  
Yuya Saito ◽  
Atsushi Makimoto ◽  
Satoshi Miyahara ◽  
Yuki Yuza
Keyword(s):  
Blood ◽  
2016 ◽  
Vol 128 (24) ◽  
pp. 2867-2867 ◽  
Author(s):  
Michelle T. Harrison ◽  
Keith Gelly

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2692-2692
Author(s):  
Xueyan Chen ◽  
Megan Othus ◽  
Brent L Wood ◽  
Roland B. Walter ◽  
Pamela S. Becker ◽  
...  

Introduction: The World Health Organization (WHO) diagnoses acute myeloid leukemia (AML) if ≥20% myeloid blasts are present in peripheral blood or bone marrow. Consequently a patient with even 19% blasts is often ineligible for an "AML study". A less arbitrary means to define "AML" and myelodysplastic syndromes ("MDS") emphasizes biologic features. Here, focusing on patients with WHO-defined MDS with excess (5-19%) blasts (MDS-EB) or AML with myelodysplasia-related changes (AML-MRC) or therapy-related (t-AML) (WHO defined secondary AML), we compared morphologic blast percentage (MBP) with the frequency of mutations in genes belonging to different functional groups, and with the variant allele frequency (VAF) for individually mutated genes. Methods: 328 adults with WHO-defined AML (de novo and secondary; n=149) or MDS (n=179) and with mutational analysis by next-generation sequencing (NGS) performed at the University of Washington Hematopathology Laboratory between 2015-2017 were included. Of these, 86 had MDS-EB and 49 had secondary AML. Mutational analysis was performed using a customized, amplicon-based assay, TruSeq Custom Amplicon (Illumina, San Diego, CA). Custom oligonucleotide probes targeted specific mutational hotspots in ASXL1, CBL, CEBPA, CSF3R, EZH2, FBXW7, FGFR1, FLT3, GATA1, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KMT2A, KRAS, MAP2K1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PHF6, PTEN, RB1, RUNX1, SF3B1, SRSF2, STAG2, STAT3, TET2, TP53, U2AF1, WT1, and ZRSR2. VAF ≥5% was required to identify point mutations. Spearman's correlation coefficient was used to examine the relation between VAF of individually mutated genes and MBP. The Mann Whitney test served to compare the distribution of VAF in AML (≥20% blasts) vs. MDS (<20% blasts), before and after exclusion of subgroups as described below. Fisher's exact test was used to compare incidence of mutations. Results: 96% of cases had ≥one mutation in the 36 genes tested using NGS. Considering all 328 patients, mutations in tumor suppressor and cohesin complex genes were similarly frequent in MDS and AML, whereas spliceosomal genes, in particular SF3B1 and SRSF2, were more frequently mutated in MDS than in AML (46% vs. 26%, p<0.001). Mutations in epigenetic modifiers were more common in AML than MDS (54% vs. 42%, p= 0.035) as were transcription factor mutations (52% vs. 28%, p<0.001). However comparisons limited to MDS-EB vs. AML-MRC/t-AML, indicated the differences observed when comparing all MDS and all AML were less apparent, both statistically and more perhaps importantly with respect to observed frequencies. For example, spliceosomal gene mutations were found in 35% in MDS-EB and 27% in AML-MRC/t-AML (p=0.34) vs. 46% and 26% in all MDS and all AML. NPM1 mutations were detected in only 8% of AML-MRC/t-AML vs. 3% in MDS-EB but 29% for all AML. Results were analogous with FLT3 ITD, FLT3 TKD, and JAK2 mutations. Examining 20 individually mutated genes detected in ≥ 10 patients only with SRSF2 (p=0.04), did distribution of VAF differ statistically according to whether blast percentage was <20% versus ≥20%. Conclusions: The similar prevalence of mutations in different functional categories in MDS-EB and AML-MRC/t-AML suggests these entities are two manifestations of the same disease. We believe it appropriate to combine these WHO entities allowing patients in each to be eligible for both AML and MDS trials. Disclosures Othus: Glycomimetics: Other: Data Safety and Monitoring Committee; Celgene: Other: Data Safety and Monitoring Committee. Walter:Amgen: Consultancy; Boston Biomedical: Consultancy; Agios: Consultancy; Argenx BVBA: Consultancy; Astellas: Consultancy; BioLineRx: Consultancy; BiVictriX: Consultancy; Covagen: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmaceuticals: Consultancy; Kite Pharma: Consultancy; New Link Genetics: Consultancy; Pfizer: Consultancy, Research Funding; Race Oncology: Consultancy; Seattle Genetics: Research Funding; Amphivena Therapeutics: Consultancy, Equity Ownership; Boehringer Ingelheim: Consultancy; Aptevo Therapeutics: Consultancy, Research Funding. Becker:Accordant Health Services/Caremark: Consultancy; AbbVie, Amgen, Bristol-Myers Squibb, Glycomimetics, Invivoscribe, JW Pharmaceuticals, Novartis, Trovagene: Research Funding; The France Foundation: Honoraria.


2013 ◽  
Vol 1 (2) ◽  
pp. 70-73
Author(s):  
Alina M Gridjac ◽  
Cristian Daniel Pirlog ◽  
Anca Simona Bojan

Background: Acute myeloid leukemia (AML) is a malignant disease with significant identified prognostic factors. Therefore our aim was to develop an Assessment Scheme of Prognosis in AML based on prognostic factors. In some counties, such as Romania or other less-highly developed countries, this scheme would be beneficial particularly when cytogenetic testing is unavailable or time-intensive. Methods: We analyzed 119 adult patients with AML during a five year-period from a single-center in Romania. We retrospectively collected and analyzed data with Epi Info and Excel using patient medical records. Results: According to age, the group A1 (<60 years) had a 40 months survival, in contrast with the group B1 (≥60 years) with a survival of 19 months (p=0,0063). The group A2 (secondary AML) survived 15 months, whereas the group B2 (AML de novo) survived 40 months (p=0.0021). Additionally, the group A3 (mild comorbidities) achieved a 40 months survival, the group B3 (moderate comorbidities) survived 19 months, whereas the group C3 (severe comorbidities) survived 7 months (p=0,0059). According to WBC and blast number, the group A4 (high levels) had a 25 months survival, whereas the group B4 (low levels) survived 40 months (p=0,0057). Conclusion: The prognostic factors studied are useful to identify the risk level of AML disease for each patient at diagnosis. We developed an assessment scheme of prognosis with three risk groups according to age, secondary AML, comorbidity, WBC and blasts and cytogenetic examination.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged &gt;60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults &gt;60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


2011 ◽  
Vol 35 ◽  
pp. S64
Author(s):  
P. Cougoul ◽  
D. Bonnet ◽  
J. Belliere ◽  
D. Brechemier ◽  
S. Thébaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document