Effects of Temperature on The UV‐B Sensitivity of Toxic Cyanobacteria Microcystis aeruginosa CS558 and Anabaena circinalis CS537

2020 ◽  
Vol 96 (4) ◽  
pp. 936-940
Author(s):  
Md Ashraful Islam ◽  
John Beardall
2004 ◽  
Vol 38 (8) ◽  
pp. 2207-2213 ◽  
Author(s):  
Libertad Garcı́a-Villada ◽  
Marcos Rico ◽  
Marı́a Altamirano ◽  
Laura Sánchez-Martı́n ◽  
Victoria López-Rodas ◽  
...  

2018 ◽  
Vol 47 (3) ◽  
pp. 296-302 ◽  
Author(s):  
Zakaria A. Mohamed ◽  
Asmaa A. Bakr ◽  
Hamed A. Ghramh

Abstract Grazing of zooplankton on phytoplankton may contribute to a reduction of harmful cyanobacteria in eutrophic waters. However, the feeding capacity and interaction between zooplankton and toxic cyanobacteria vary among grazer species. In this study, laboratory feeding experiments were designed to measure the grazing rate of the copepod Cyclops vicinus on Microcystis aeruginosa and the potential microcystin (MC) accumulation in the grazer. Copepods were fed a mixed diet of the edible green alga Ankistrodesmus falcatus and toxic M. aeruginosa for 10 days. The results showed that C. vicinus efficiently ingested toxic Microcystis cells with high grazing rates, varying during the feeding period (68.9–606.3 Microcystis cells animal-1 d-1) along with Microcystis cell density. Microcystis cells exhibited a remarkable induction in MC production under grazing conditions with concentrations 1.67–12.5 times higher than those in control cultures. Furthermore, C. vicinus was found to accumulate MCs in its body with concentrations increasing during the experiment (0.05–3.21 μg MC animal-1). Further in situ studies are needed to investigate the ability of Cyclops and other copepods to assimilate and detoxify MCs at environmentally relevant concentrations before deciding on the biocontrol of Microcystis blooms by copepods.


2020 ◽  
Vol 193 (3) ◽  
pp. 261-274
Author(s):  
Alfredo Pérez-Morales ◽  
S.S.S. Sarma ◽  
S. Nandini ◽  
Cristian Alberto Espinosa-Rodríguez ◽  
Ligia Rivera-De la Parra

Tropical waterbodies contain several species of toxic cyanobacteria including Microcystis, which adversely affect the somatic growth, survival and fecundity of zooplankton. Scenedesmus, one of the most common green algae, is even found in Microcystis -dominated waterbodies. It is, therefore possible that in natural ponds, rotifers and cladocerans feed on mixed phytoplankton species containing algae and cyanobacteria. In this work, we quantified demographic responses of three rotifer species (Brachionus calyciflorus, B. rubens, and Plationus patulus), and three cladoceran species (Simocephalus mixtus, Daphnia cf. mendotae and Moina macrocopa) fed toxic Microcystis aeruginosa only or mixed with Scenedesmus acutus. The highest population growth for both rotifer and cladoceran species was observed when Scenedesmus was offered alone or at 75 % of the diet. Daphnia cf. mendotae and B. rubens were less affected by Microcystis while M. macrocopa and B. calyciflorus were more adversely influenced, which was also corroborated by life table demography. In competition bioassays, D. cf. mendotae was more efficient, alone or in competition, when fed with 50 or 25 % of Microcystis. This work explains the dynamics of the zooplanktonic community against gradual changes in phytoplankton due to the presence of cyanobacteria.


2020 ◽  
Vol 28 (1) ◽  
pp. 235-245
Author(s):  
Soukaina El Amrani Zerrifi ◽  
El Mahdi Redouane ◽  
Richard Mugani ◽  
Inês Ribeiro ◽  
Maria de Fátima Carvalho ◽  
...  

2018 ◽  
Vol 16 (2) ◽  
pp. 361-367
Author(s):  
Nguyen Trung Kien ◽  
Tran Thi Thu Huong ◽  
Nguyen Hoai Chau ◽  
Dang Dinh Kim ◽  
Duong Thi Thuy

Cyanobacterial and toxins produced in cyanobacterial water blooms cause serious environmental problems which effects on freshwater ecosystems. The use of nanomaterials to control algal blooms is a new potential way for practical application due to its antibacterial as well as distinct physicochemical properties of nanomaterials. The particle size is one of the most determinant characteristics creating the different between nanomaterials and their larger bulk counterparts. However, size-dependent toxicity of nanoparticles has remained largely unknown. This study aimed to evaluate effect of three different nanoparticle sizes (d ≤ 10 nm; 30 nm ≤ d ≤ 40 nm and d ≥ 50 nm) on toxic cyanobacteria Microcystis aeruginosa. The copper nanoparticles were synthesized by electrochemical method and coated with chitosan to enhance the stability of materials in the water environment. The copper nanoparticle concentrations selected for toxic test were range from 0 (control); 0,01ppm; 0,05ppm; 0,1 ppm; 1ppm and 5 ppm. After ten days of experiment, the growth of M. aeruginosa was mainly affected at concentrations of 1 ppm and 5 ppm and there are no differences in inhibition between the particle sizes with efficiency of more than 80% in comparison to control. The highest toxicity of copper nanoparticles in M. aeruginosa was observed at particle size of 30 nm ≤ d ≤ 40 nm with EC50 = 0,73 ppm, which was respectively three to seven times less than the particle sizes of d ≥ 50 nm (EC50 = 2,62 ppm) and d ≤ 10nm (EC50 = 5,02 ppm) at the same time.


2005 ◽  
Vol 277-279 ◽  
pp. 606-611 ◽  
Author(s):  
Hye Ryoung Kim ◽  
Chi Kyung Kim ◽  
Tae Seok Ahn ◽  
Soon Ae Yoo ◽  
Dong Hun Lee

Sign in / Sign up

Export Citation Format

Share Document