Are all real‐world objects created equal? Estimating the “set‐size” of the search target in visual working memory

2022 ◽  
Author(s):  
Michael T. Miuccio ◽  
Gregory J. Zelinsky ◽  
Joseph Schmidt
2020 ◽  
Author(s):  
Timothy F. Brady ◽  
Viola S. Störmer ◽  
Anna Shafer-Skelton ◽  
Jamal Rodgers Williams ◽  
Angus F. Chapman ◽  
...  

Both visual attention and visual working memory tend to be studied with very simple stimuli and low-level paradigms, designed to allow us to understand the representations and processes in detail, or with fully realistic stimuli that make such precise understanding difficult but are more representative of the real world. In this chapter we argue for an intermediate approach in which visual attention and visual working memory are studied by scaling up from the simplest settings to more complex settings that capture some aspects of the complexity of the real-world, while still remaining in the realm of well-controlled stimuli and well-understood tasks. We believe this approach, which we have been taking in our labs, will allow a more generalizable set of knowledge about visual attention and visual working memory while maintaining the rigor and control that is typical of vision science and psychophysics studies.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 98-98
Author(s):  
Corinne Cannavale ◽  
Caitlyn Edwards ◽  
Ruyu Liu ◽  
Samantha Iwinski ◽  
Anne Walk ◽  
...  

Abstract Objectives Carotenoids are plant pigments known to deposit in neural tissues including the hippocampus, a brain substrate that supports several memory forms. However, there is a dearth of knowledge regarding carotenoid status and working memory function in children. Accordingly, this study aimed to understand the relationship between macular and skin carotenoids to visual and auditory working memory (WM) function. Methods Seventy preadolescent children (7–12 years, 32 males) were recruited from the East-Central Illinois area. Auditory working memory was assessed using the story recall subtest of the Woodcock-Johnson IV Test of Cognitive Abilities. A subsample (N = 61, 27 males) completed a visual working memory task and reaction time was quantified to determine speed of memory processing at set sizes of 1 to 4 items. Macular pigment optical density (MPOD) was assessed using customized heterochromatic flicker photometry. Skin carotenoids were assessed using reflection spectroscopy (Veggie Meter). Hierarchical linear regressions were conducted to assess the relationship between carotenoid status and WM function, while controlling for age, sex, income, and whole-body % fat (DXA). Results Auditory WM was positively associated with skin carotenoids (b = 0.263, P = 0.039) but not MPOD (b = −0.044, P = 0.380). In contrast, MPOD was significantly associated with faster visual WM speed at set size 3 (b = −0.253, P = 0.039) and trending at set sizes of 1 (b = −0.225, P = 0.051), 2 (b = −0.171, P = 0.121), and 4 (b = −0.230, P = 0.055). Interestingly, skin carotenoids were not related to visual WM performance at either set size (all P’s > 0.300). Conclusions These results indicate that auditory and visual WM may be differentially related to carotenoids. While skin carotenoids encompass all carotenoids consumed in diet, lutein and zeaxanthin are the only carotenoids which deposit in the macula. Given that MPOD was only related to visual WM, this suggests lutein plays a larger role in these neural functions relative to auditory WM. Interestingly, MPOD's relationship with visual WM increased in strength with the more difficult trial type (i.e., increasing set size), indicating MPOD is related at higher levels of WM capacity. Funding Sources This study was funded by the Egg Nutrition Center.


2020 ◽  
Author(s):  
Timothy F. Brady ◽  
Viola S. Störmer

Visual working memory is a capacity-limited cognitive system used to actively store and manipulate visual information. Visual working memory capacity is not fixed, but varies by stimulus type: stimuli that are more meaningful are better remembered. In the current work, we investigate what conditions lead to the strongest benefits for meaningful stimuli. We propose that in some situations, participants may be prone to try to encode the entire display holistically (i.e., in a quick ‘snapshot’), encouraging participants to treat objects simply as meaningless colored ‘blobs’, rather than processing them individually and in a high-level way, which could reduce benefits for meaningful stimuli. In a series of experiments we directly test whether real-world objects, colors, perceptually-matched less-meaningful objects, and fully scrambled objects benefit from deeper processing. We systematically vary the presentation format of stimuli at encoding to be either simultaneous — encouraging a parallel, ‘take-a-quick-snapshot’ strategy — or present the stimuli sequentially, promoting a serial, each-item-at-once strategy. We find large advantages for meaningful objects in all conditions, but find that real-world objects — and to a lesser degree lightly scrambled, still meaningful versions of the objects — benefit from the sequential encoding and thus deeper, focused-on-individual-items processing, while colors do not. Our results suggest single feature objects may be an outlier in their affordance of parallel, quick processing, and that in more realistic memory situations, visual working memory likely relies upon representations resulting from in-depth processing of objects (e.g., in higher-level visual areas) rather than solely being represented in terms of their low-level features.


Author(s):  
Timothy F. Brady ◽  
Viola S. Störmer ◽  
Anna Shafer-Skelton ◽  
Jamal R. Williams ◽  
Angus F. Chapman ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0167022 ◽  
Author(s):  
Gennadiy Gurariy ◽  
Kyle W. Killebrew ◽  
Marian E. Berryhill ◽  
Gideon P. Caplovitz

2021 ◽  
Author(s):  
Cherie Zhou ◽  
Monicque M. Lorist ◽  
Sebastiaan Mathot

Recent studies on visual working memory (VWM) have shown that visual information can be stored in VWM as continuous (e.g., a specific shade of red) as well as categorical representations (e.g., the general category red). It has been widely assumed, yet never directly tested, that continuous representations require more VWM mental effort than categorical representations; given limited VWM capacity, this would mean that fewer continuous, as compared to categorical, representations can be maintained simultaneously. We tested this assumption by measuring pupil size, as a proxy for mental effort, in a delayed estimation task. Participants memorized one to four ambiguous (boundaries between adjacent color categories) or prototypical colors to encourage continuous or categorical representations, respectively; after a delay, a probe indicated the location of the to-be-reported color. We found that, for set size 1, pupil size was larger while maintaining ambiguous as compared to prototypical colors, but without any difference in memory precision; this suggests that participants relied on an effortful continuous representation to maintain a single ambiguous color, thus resulting in pupil dilation while preserving precision. In contrast, for set size 2 and higher, pupil size was equally large while maintaining ambiguous and prototypical colors, but memory precision was now substantially reduced for ambiguous colors; this suggests that participants now also relied on categorical representations for ambiguous colors (which are by definition a poor fit to any category), thus reducing memory precision but not resulting in pupil dilation. Taken together, our results suggest that continuous representations are more effortful than categorical representations, and that very few continuous representations (perhaps only one) can be maintained simultaneously.


2019 ◽  
Vol 19 (10) ◽  
pp. 134a
Author(s):  
Chaipat Chunharas ◽  
Timothy F Brady

Sign in / Sign up

Export Citation Format

Share Document