scholarly journals Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis

Risk Analysis ◽  
2014 ◽  
Vol 35 (5) ◽  
pp. 882-900 ◽  
Author(s):  
E. E. Koks ◽  
M. Bočkarjova ◽  
H. de Moel ◽  
J. C. J. H. Aerts
2018 ◽  
Vol 18 (11) ◽  
pp. 3089-3108 ◽  
Author(s):  
Ayse Duha Metin ◽  
Nguyen Viet Dung ◽  
Kai Schröter ◽  
Björn Guse ◽  
Heiko Apel ◽  
...  

Abstract. Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.


2010 ◽  
Vol 37 (7) ◽  
pp. 955-967 ◽  
Author(s):  
B. P. Gouldby ◽  
P. B. Sayers ◽  
M. C. Panzeri ◽  
J. E. Lanyon

Increasingly, an understanding of flood risk across regions and nations, and an ability to explore how these might change in time, is seen as a prerequisite to effective and efficient flood risk management. In response, specific flood risk analysis methods have been developed that are both accurate and fast to run. Although widely acknowledged as desirable, it has not previously been possible to quantify the uncertainty associated with the assessed flood probability, consequence, or risk. To help overcome this deficiency, an efficient method for the propagation of epistemic uncertainties through large-scale flood risk system models has been developed and trialed for three pilot catchments. The approach is allied to an efficient sensitivity analysis that enables the influence of individual uncertainties on the output quantity of risk to be isolated, enabling future research, development, and data-gathering efforts to be focused.


2018 ◽  
Author(s):  
Ayse Duha Metin ◽  
Nguyen Viet Dung ◽  
Kai Schröter ◽  
Björn Guse ◽  
Heiko Apel ◽  
...  

Abstract. Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasise the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influences the overall flood risk.


Sign in / Sign up

Export Citation Format

Share Document