Applied Photoelasticity for Residual Stress Measurement inside Crystal Silicon Wafers for Solar Applications

Strain ◽  
2016 ◽  
Vol 52 (4) ◽  
pp. 355-368 ◽  
Author(s):  
F. Jagailloux ◽  
V. Valle ◽  
J.-C. Dupré ◽  
J.-D. Penot ◽  
A. Chabli
Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Tengyun Liu ◽  
Peiqi Ge ◽  
Wenbo Bi

Lower warp is required for the single crystal silicon wafers sawn by a fixed diamond wire saw with the thinness of a silicon wafer. The residual stress in the surface layer of the silicon wafer is the primary reason for warp, which is generated by the phase transitions, elastic-plastic deformation, and non-uniform distribution of thermal energy during wire sawing. In this paper, an experiment of multi-wire sawing single crystal silicon is carried out, and the Raman spectra technique is used to detect the phase transitions and residual stress in the surface layer of the silicon wafers. Three different wire speeds are used to study the effect of wire speed on phase transition and residual stress of the silicon wafers. The experimental results indicate that amorphous silicon is generated during resin bonded diamond wire sawing, of which the Raman peaks are at 178.9 cm−1 and 468.5 cm−1. The ratio of the amorphous silicon surface area and the surface area of a single crystal silicon, and the depth of amorphous silicon layer increases with the increasing of wire speed. This indicates that more amorphous silicon is generated. There is both compressive stress and tensile stress on the surface layer of the silicon wafer. The residual tensile stress is between 0 and 200 MPa, and the compressive stress is between 0 and 300 MPa for the experimental results of this paper. Moreover, the residual stress increases with the increase of wire speed, indicating more amorphous silicon generated as well.


2021 ◽  
Vol 165 ◽  
pp. 107861
Author(s):  
Hao Jiang ◽  
Junjun Liu ◽  
Zhenkun Lei ◽  
Ruixiang Bai ◽  
Zhenfei Guo ◽  
...  

2015 ◽  
Vol 659 ◽  
pp. 623-627 ◽  
Author(s):  
Cherdpong Jomdecha ◽  
Isaratat Phung-On

The objective of this paper is an analysis of statistical discreteness and measurement capability of an eddy-current measurement system for residual stress assessment in stainless steel Grade 304 (SS304). Cylindrical specimens with 50 mm in diameter and 12 mm thickness were prepared to generate residual stress by Resistance Spot Welding at which the welding currents were set at 12, 14, and 16 kA. The eddy-current measurement system was including a probe with frequency range of 0.1 to 3 MHz and an eddy current flaw detector. They were performed by contacting the probe on the specimen. The measurements were performed particularly in the vicinity of heat affected zone (HAZ). In order to determine the results of the residual stress measurement, the calibration curves between static tensile stress and eddy current impedance at various frequencies were accomplished. The Measurement System Analysis (MSA) was utilized to evaluate the changed eddy-current probe impedance from residual stress. The results showed that using eddy current technique at 1 MHz for residual stress measurement was the most efficient. It can be achieved the Gauge Repeatability & Reproducibility %GR&R at 16.61479 and Number of Distinct Categories (NDC) at 8. As applied on actual butt welded joint, it could yield the uncertainty of ± 58 MPa at 95 % (UISO).


2004 ◽  
Vol 155-156 ◽  
pp. 1171-1177 ◽  
Author(s):  
Man Jin Park ◽  
Hee Nam Yang ◽  
Dong Y. Jang ◽  
Jong Sung Kim ◽  
Tae Eun Jin

Sign in / Sign up

Export Citation Format

Share Document