Development of universal and quadruplex real‐time RT‐PCR assays for simultaneous detection and differentiation of porcine reproductive and respiratory syndrome viruses

2019 ◽  
Vol 66 (6) ◽  
pp. 2271-2278 ◽  
Author(s):  
Nanhua Chen ◽  
Mengxue Ye ◽  
Yanzhao Xiao ◽  
Shuai Li ◽  
Yucheng Huang ◽  
...  
2005 ◽  
Vol 17 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Steven B. Kleiboeker ◽  
Susan K. Schommer ◽  
Sang-Myeong Lee ◽  
Sandy Watkins ◽  
Wayne Chittick ◽  
...  

Porcine reproductive and respiratory syndrome (PRRS) is 1 of the most economically important diseases of swine. Detection of the etiologic agent, PRRS virus (PRRSV), represents a diagnostic challenge due to the heterogeneity of field isolates as well as the propensity for swine to develop persistent infection in which virus is difficult to detect. Recently European (EU) lineage PRRSV isolates, which are genetically divergent from North American (NA) isolates, have been introduced into NA swine further complicating efforts to diagnose this disease. In this study, real-time ( TaqMan) reverse transcriptase (RT)–PCR assays were developed for multiplex detection, differentiation, and quantification of NA and EU PRRSV field isolates. Oligonucleotide primers and dual-labeled probes were selected from conserved regions of open-reading frame 7 and the 3'-untranslated region. The real-time RT-PCR assays described for the NA or EU genotype of PRRSV detected viral RNA from 83/83 strains (74 NA; 9 EU) previously isolated by cell culture between 1992 and 2003. The analytical sensitivity of both assays was consistently found to be less than a single TCID50, which corresponded to 5–10 RNA molecules, and was not significantly reduced when the reactions were performed in a multiplex format. When performing multiplex reactions, sensitive detection was possible even when 1 viral RNA concentration was up to 5,000-fold higher than the second. The diagnostic sensitivity and specificity of the multiplex reaction was found to be at a minimum equivalent to that of both nested RT-PCR and virus isolation.


Author(s):  
Ute Eberle ◽  
◽  
Clara Wimmer ◽  
Ingrid Huber ◽  
Antonie Neubauer-Juric ◽  
...  

AbstractTo face the COVID-19 pandemic, the need for fast and reliable diagnostic assays for the detection of SARS-CoV-2 is immense. We describe our laboratory experiences evaluating nine commercially available real-time RT-PCR assays. We found that assays differed considerably in performance and validation before routine use is mandatory.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


2013 ◽  
Vol 189 (2) ◽  
pp. 277-282 ◽  
Author(s):  
Yong Yan ◽  
Heng-hui Wang ◽  
Lei Gao ◽  
Ji-mei Ji ◽  
Zhi-jie Ge ◽  
...  

2009 ◽  
Vol 81 (9) ◽  
pp. 1569-1575 ◽  
Author(s):  
Lan Lin ◽  
Louis Libbrecht ◽  
Jannick Verbeeck ◽  
Chris Verslype ◽  
Tania Roskams ◽  
...  

2014 ◽  
Vol 201 ◽  
pp. 79-85 ◽  
Author(s):  
Michele Drigo ◽  
Giovanni Franzo ◽  
Ilaria Belfanti ◽  
Marco Martini ◽  
Alessandra Mondin ◽  
...  

2003 ◽  
Vol 69 (7) ◽  
pp. 4116-4122 ◽  
Author(s):  
Gianluca Bleve ◽  
Lucia Rizzotti ◽  
Franco Dellaglio ◽  
Sandra Torriani

ABSTRACT Reverse transcriptase PCR (RT-PCR) and real-time RT-PCR assays have been used to detect and quantify actin mRNA from yeasts and molds. Universal primers were designed based on the available fungal actin sequences, and by RT-PCR they amplified a specific 353-bp fragment from fungal species involved in food spoilage. From experiments on heat-treated cells, actin mRNA was a good indicator of cell viability: viable cells and cells in a nonculturable state were detected, while no signal was observed from dead cells. The optimized RT-PCR assay was able to detect 10 CFU of fungi ml−1 in pure culture and 103 and 102 CFU ml−1 in artificially contaminated yogurts and pasteurized fruit-derived products, respectively. Real-time RT-PCR, performed on a range of spoiled commercial food products, validated the suitability of actin mRNA detection for the quantification of naturally contaminating fungi. The specificity and sensitivity of the procedure, combined with its speed, its reliability, and the potential automation of the technique, offer several advantages to routine analysis programs that assess the presence and viability of fungi in food commodities.


Sign in / Sign up

Export Citation Format

Share Document