scholarly journals A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematodeGlobodera rostochiensisis cleavedin plantato promote plant parasitism

2013 ◽  
Vol 74 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Demosthenis Chronis ◽  
Shiyan Chen ◽  
Shunwen Lu ◽  
Tarek Hewezi ◽  
Sara C.D. Carpenter ◽  
...  
Parasitology ◽  
2014 ◽  
Vol 142 (S1) ◽  
pp. S71-S84 ◽  
Author(s):  
DAVID McK. BIRD ◽  
JOHN T. JONES ◽  
CHARLES H. OPPERMAN ◽  
TAISEI KIKUCHI ◽  
ETIENNE G. J. DANCHIN

SUMMARYPlant-parasitic nematodes cause considerable damage to global agriculture. The ability to parasitize plants is a derived character that appears to have independently emerged several times in the phylum Nematoda. Morphological convergence to feeding style has been observed, but whether this is emergent from molecular convergence is less obvious. To address this, we assess whether genomic signatures can be associated with plant parasitism by nematodes. In this review, we report genomic features and characteristics that appear to be common in plant-parasitic nematodes while absent or rare in animal parasites, predators or free-living species. Candidate horizontal acquisitions of parasitism genes have systematically been found in all plant-parasitic species investigated at the sequence level. Presence of peptides that mimic plant hormones also appears to be a trait of plant-parasitic species. Annotations of the few genomes of plant-parasitic nematodes available to date have revealed a set of apparently species-specific genes on every occasion. Effector genes, important for parasitism are frequently found among those species-specific genes, indicating poor overlap. Overall, nematodes appear to have developed convergent genomic solutions to adapt to plant parasitism.


Zootaxa ◽  
2015 ◽  
Vol 4013 (2) ◽  
pp. 207 ◽  
Author(s):  
ALCIDES SÁNCHEZ-MONGE ◽  
LORENA FLORES ◽  
LUIS SALAZAR ◽  
SUE HOCKLAND ◽  
WIM BERT

Nematology ◽  
2000 ◽  
Vol 2 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Godelieve Gheysen ◽  
Jan De Meutter ◽  
Tom Tytgat ◽  
August Coomans

AbstractPlant parasitic nematodes are known to cause a severe reduction in crop yield. Recently much effort is being put to engineering new nematode-resistant crop cultivars. Plant parasitic nematodes occur in three widely separated orders: Triplonchida, Dorylaimida and Tylenchida. All triplonchid and dorylaimid plant parasitic nematodes are migratory ectoparasites of roots. Within the Tylenchida, several different types of plant parasitism can be recognised. The sedentary endoparasites have the most complex interaction with their host, and are responsible for the vast majority of the agricultural damage. This causes most research to be concentrated on two groups of the sedentary endoparasitic nematodes: cyst- and root-knot nematodes. Both induce specialised feeding structures in the vascular cylinder of the plant root. The mechanism of phytoparasitism of the cyst- and root-knot nematodes is reviewed, of which some aspects will be applicable to the study of the other plant parasitic nematodes. Les nématodes parasites de plantes sont connus pour provoquer de sévères réductions dans les rendements des cultures. Actuellement, un effort se développe pour créer de nouveaux cultivars résistants aux nématodes. Les nématodes parasite de plantes appartiennent à trois ordres très éloignés: Triplonchida, Dorylaimida et Tylenchida. Tous les nématodes parasites de plantes chez les Triplonchida et Dorylaimida sont des ectoparasites migrateurs. Chez les Tylenchida, plusieurs types différents de parasitisme peuvent être identifiés. Les endoparasites sédentaires ont l’interaction la plus complexe avec leur hôte et sont responsables de la plus grande part des dégâts agricoles. C’est la raison pour laquelle la plupart des recherches sont concentrées sur deux groupes de nématodes endoparasites sédentaires, les nématodes à kystes et les nématodes galligènes. Ces deux groupes induisent des structures d’alimentation spécialisées dans les tissus vasculaires de la racine végétale. Le mécanisme parasitaire des nématodes à kystes et galligènes est revu, certaines de leurs caractéristiques pouvant être applicables à l’étude des autres nématodes phytoparasites.


2011 ◽  
Vol 24 (8) ◽  
pp. 879-887 ◽  
Author(s):  
Annelies Haegeman ◽  
John T. Jones ◽  
Etienne G. J. Danchin

The origin of plant parasitism within the phylum Nematoda is intriguing. The ability to parasitize plants has originated independently at least three times during nematode evolution and, as more molecular data has emerged, it has become clear that multiple instances of horizontal gene transfer (HGT) from bacteria and fungi have played a crucial role in the nematode's adaptation to this new lifestyle. The first reported HGT cases in plant-parasitic nematodes were genes encoding plant cell wall–degrading enzymes. Other putative examples of HGT were subsequently described, including genes that may be involved in the modulation of the plant's defense system, the establishment of a nematode feeding site, and the synthesis or processing of nutrients. Although, in many cases, it is difficult to pinpoint the donor organism, candidate donors are usually soil dwelling and are either plant-pathogenic or plant-associated microorganisms, hence occupying the same ecological niche as the nematodes. The exact mechanisms of transfer are unknown, although close contacts with donor microorganisms, such as symbiotic or trophic interactions, are a possibility. The widespread occurrence of horizontally transferred genes in evolutionarily independent plant-parasitic nematode lineages suggests that HGT may be a prerequisite for successful plant parasitism in nematodes.


2017 ◽  
Vol 148 (4) ◽  
pp. 853-866 ◽  
Author(s):  
Alcides Sánchez-Monge ◽  
Toon Janssen ◽  
Yiwu Fang ◽  
Marjolein Couvreur ◽  
Gerrit Karssen ◽  
...  

EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


Sign in / Sign up

Export Citation Format

Share Document