Poly ADP‐ribose polymerase‐1 promotes seed‐setting rate by facilitating gametophyte development and meiosis in rice ( Oryza sativa L.)

2021 ◽  
Author(s):  
Xiumei Li ◽  
Yixin Zhang ◽  
Qinjian Liu ◽  
Songquan Song ◽  
Jun Liu
2016 ◽  
Vol 15 (4) ◽  
pp. 735-743
Author(s):  
Elsheikh Y M Ahmed ◽  
Yan-pei ZHANG ◽  
Jian-ping YU ◽  
Rashid M A Rehman ◽  
Zhan-ying ZHANG ◽  
...  

PROTOPLASMA ◽  
2015 ◽  
Vol 254 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Manas Kumar Tripathy ◽  
Budhi Sagar Tiwari ◽  
Malireddy K. Reddy ◽  
Renu Deswal ◽  
Sudhir K. Sopory

2015 ◽  
Vol 42 (4) ◽  
pp. 347 ◽  
Author(s):  
Dongliang Xiong ◽  
Tingting Yu ◽  
Xiaoxia Ling ◽  
Shah Fahad ◽  
Shaobing Peng ◽  
...  

To determine whether variations in high-temperature (HT) tolerance in three rice (Oryza sativa L.) cultivars and two N treatments are related to leaf transpiration rate (E), and whether the involvement of nonstructural carbohydrates (NSC) in HT tolerance is related to E, a pot experiment supplied with two N levels (low N, 0.077 g urea kg–1 soil; sufficient N, 0.538 g urea kg–1 soil) was conducted under ambient temperature (AT) and HT with three cultivars, N22, Zhenshan 97B and Koshihikari. HT significantly decreased grain yield and seed setting percentage in Koshihikari and ZS97, which could be partly offset by a sufficient N supply. The most HT-tolerant cultivar, N22, had the highest E and stem NSC concentrations under both N treatments, whereas the most sensitive cultivar, Koshihikari, had the lowest E and stem NSC concentrations. A sufficient N supply significantly increased E in the three cultivars under the HT treatment. Grain yield and seed-setting percentage were positively related to E and plant NSC concentration under HT, and E was positively related to NSC concentration under both AT and HT. Therefore, variations in HT tolerance among rice cultivars and nitrogen treatments were related to E, and possibly to NSC concentration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haowen Luo ◽  
Yulin Chen ◽  
Longxin He ◽  
Xiangru Tang

Abstract Background Lanthanum (La) is a rare earth element that can influence plant growth and development. However, the effect of La on growth, yield formation and 2-acetyl-1-pyrroline (2-AP, a key compound responsible for the aroma of rice) biosynthesis in aromatic rice (Oryza sativa L. subsp. japonica Kato) has not been reported. Therefore, the present study investigated the effects of La on growth, photosynthesis, yield formation and 2-AP biosynthesis in aromatic rice through three experiments. Results Two pot experiments and a two-year field trial were conducted with different rates of La application (20–120 LaCl3 mg kg−1 and 12 kg ha−1 LaCl3), and treatments without La application were used as controls. The results showed that the application of LaCl3 at 80 and 100 mg kg−1 and at 12 kg ha−1 greatly increased the 2-AP content (by 6.45–43.03%) in aromatic rice seedlings and mature grains compared with the control. The La treatments also increased the chlorophyll content, net photosynthetic rate and total aboveground biomass of rice seedlings. Higher antioxidant enzyme (superoxide, peroxidase, and catalase) activity was detected in the La treatments than in the control. The La treatments also increased the grain yield, grain number per panicle and seed-setting rate of aromatic rice relative to the control. Moreover, the grain proline and γ-aminobutyric acid contents and the activity of betaine aldehyde dehydrogenase significantly decreased under the La treatment. The application of La to soil enhanced the activity of proline dehydrogenase by 20.62–56.95%. Conclusions La improved the growth, yield formation and 2-AP content of aromatic rice and enhanced 2-AP biosynthesis by increasing the conversion of proline to 2-AP and decreasing the conversion of GABald to GABA.


1970 ◽  
Vol 5 (3) ◽  
pp. 391-403
Author(s):  
Wiwik Winarti ◽  
Eva Sartini Bayu ◽  
Revandy Iskandar Damanik

Keragaan morfologi dan kandungan antosianin padi beras merah (Oryza sativa L.) pada Kecamatan Munte dan Kecamatan Payung di Kabupaten Karo. Penelitian ini bertujuan untuk mendapatkan informasi morfologi dan kandungan antosianin padi beras merah (Oryza sativa L.). Penelitian ini dimulai dari Juni 2017dan selesai pada Januari 2018 di kecamatan Munte dan Kecamatan Payung Kabupaten Karo.Metode survei deskriptif menggunakan panduan International Rice Research Institute (IRRI). Teknik penentuan lokasi secara sengaja dan pengamblan sampel secara kebetulan.Uji kandungan antosianin menggunakan metode analitik dengan menghomogenkan sampel. Hasil eksplorasi didapatkan 72 genotipe yang dibagi menjadi tiga lokasi lahan. Berdasaran uji kandungan antosianin didapatkan lahan A memiliki kandungan tertinggi yaitu 0,5 mg/100 g dan terendah yaitu lahan B 0,08 mg/100 g.


ENTOMON ◽  
2018 ◽  
Vol 43 (4) ◽  
pp. 257-262
Author(s):  
Atanu Seni ◽  
Bhimasen Naik

Experiments were carried out to assess some insecticide modules against major insect pests of rice. Each module consists of a basal application of carbofuran 3G @ 1 kg a.i ha-1 at 20 DAT and Rynaxypyr 20 SC @ 30 g a.i ha-1 at 45 DAT except untreated control. All modules differ with each other only in third treatment which was applied in 65 DAT. The third treatment includes: Imidacloprid 17.8 SL @ 27 g a.i ha-1, Pymetrozine 50 WG @ 150 g a.i ha-1, Triflumezopyrim 106 SC @ 27 g a.i ha-1, Buprofezin 25 SC @ 250 g a.i ha-1; Glamore (Imidacloprid 40+Ethiprole 40% w/w) 80 WG @ 100 g a.i. ha-1, Thiacloprid 24 SC @ 60 g a.i ha-1, Azadirachtin 0.03 EC @ 8 g a.i ha-1, Dinotefuran 20 SG@ 40 g a.i ha-1 and untreated control. All the treated plots recorded significantly lower percent of dead heart, white ear- head caused by stem borer and silver shoot caused by gall midge. Module with Pymetrozine 50 WG @ 150 g a.i ha-1 treated plot recorded significantly higher per cent reduction of plant hoppers (>80% over untreated control) and produced higher grain yield (50.75 qha-1) than the other modules. Among the different treated modules the maximum number of spiders was found in Azadirachtin 0.03 EC @ 8 g a.i ha-1 treated module plot followed by other treatments.


2012 ◽  
Vol 2 (11) ◽  
pp. 13-14
Author(s):  
R. ARULMOZHI R. ARULMOZHI ◽  
◽  
Dr. A. MUTHUSWAMY Dr. A. MUTHUSWAMY

Sign in / Sign up

Export Citation Format

Share Document