scholarly journals Structural property, molecular regulation and functional diversity of Glutamine Synthetase in higher plants: a data‐mining bioinformatics approach

2021 ◽  
Author(s):  
Raju Mondal ◽  
Amit Kumar ◽  
Sanjib Kumar Chattopadhyay
1988 ◽  
Vol 66 (10) ◽  
pp. 2103-2109 ◽  
Author(s):  
K. W. Joy

In plants, the primary input of nitrogen (obtained from the soil or from symbiotic dinitrogen fixation) occurs through the assimilation of ammonia into organic form. Synthesis of glutamine (via glutamine synthetase) is the major, and possibly exclusive, route for this process, and there is little evidence for the participation of glutamate dehydrogenase. A variety of reactions distribute glutamine nitrogen to other compounds, including transfer to amino nitrogen through glutamate synthase. In many plants asparagine is a major recipient of glutamine nitrogen and provides a mobile reservoir for transport to sites of growth; ureides perform a similar function in some legumes. Utilisation of transport forms of nitrogen, and a number of other metabolic processes, involves release of ammonia, which must be reassimilated. In illuminated leaves, there is an extensive flux of ammonia released by the photorespiratory cycle, requiring continuous efficient reassimilation. Aspects of ammonia recycling and related amide metabolism in higher plants are reviewed.


2012 ◽  
Vol 25 (7) ◽  
pp. 976-992 ◽  
Author(s):  
Ana R. Seabra ◽  
Patrícia A. Pereira ◽  
Jörg D. Becker ◽  
Helena G. Carvalho

Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.


2021 ◽  
Vol 48 (3) ◽  
pp. 358
Author(s):  
Kamal K. Singh ◽  
Shyamaprasad Saha ◽  
Ram C. Kadiravana ◽  
Deepika Mazumdar ◽  
Vijeta Rai ◽  
...  

Water deficit (WD) has adverse effects on plant growth, and acclimation requires responses allowing primary metabolism to continue. Resurrection plants can serve as model system to gain insight into metabolic regulation during WD. We herein report the response of a resurrection lycophyte, Selaginella bryopteris, to dehydration-rehydration cycle with emphasis on ammonium metabolism. Dehydration of S. bryopteris fronds resulted in decrease of total protein and increase of free ammonium levels and the effect was reversed on rehydration. The proline content increased twice after 24 h of dehydration, which again recovered to background levels comparable to that at full turgor state. The specific activity of glutamine synthetase (GS) didn’t change significantly till 6 h and then declined by 21% after 24 h of dehydration, whereas specific activities of glutamate synthase (GOGAT) and aminating glutamate dehydrogenase (GDH) were enhanced significantly during dehydration. The deaminating activity of GDH also increased during dehydration albeit at a slower rate. Immunoblot analysis indicated overexpression of GS and GDH polypeptides during dehydration and their levels declined on rehydration. The results suggested significant role of GDH along with GS/GOGAT in production of nitrogen-rich amino acids for desiccation tolerance. Unlike higher plants S. bryopteris expressed GS only in cytosol. The enzyme had pH and temperature optima of 5.5 and 60°C, respectively, and it retained 96% activity on preincubation at 60°C for 30 min indicating thermostability. Hence, like higher plants the cytosolic GS from S. bryopteris has a conserved role in stress tolerance.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Jian-Shu Zheng ◽  
Chun-Ming Yu ◽  
Ping Chen ◽  
Yan-Zhou Wang ◽  
Tou-Ming Liu ◽  
...  

AbstractGlutamine synthetase (GS) plays a fundamental role in nitrogen metabolism in higher plants. Three BnGS genes have first been isolated: one gene encoding plastid GS (BnGS2) and two encoding cytosolic GS (BnGS1-1 and BnGS1-2) in ramie. Based on a sequence analysis and phylogenetic study, three BnGS sequences were classified into three distinct sub-families. The phylogenetic analysis showed that BnGS2 and BnGS1-2 were closely related to those of legumes, alfalfa (Medicago sativa), soybean (Glycine max) and bean (Phaseolus vulgaris). The BnGS gene expression patterns revealed that each gene exhibited similar organ specificity, but distinct transcript intensity during different vegetative processes. The relatively abundant expression of BnGS1-1 and BnGS2 at specific organs during different vegetative processes indicates that they have critical roles in nitrogen uptake and assimilation relating to forage and growth characteristics. The BnGS1-2 mRNA levels were remarkably upregulated in the phloem, xylem and stems during the fiber development stage, suggesting a correlation with fiber development. Therefore, the non-overlapping transcript intensity of BnGS genes in different tissues regulates ramie growth and development during different vegetative processes.


1984 ◽  
Vol 138 (1) ◽  
pp. 63-66 ◽  
Author(s):  
Bertrand HIREL ◽  
Sheila F. McNALLY ◽  
Pierre GADAL ◽  
Nazira SUMAR ◽  
George R. STEWART

Surgery ◽  
1995 ◽  
Vol 118 (2) ◽  
pp. 325-335 ◽  
Author(s):  
S ABCOUWER ◽  
G LUKASCEWICZ ◽  
U RYAN ◽  
W SOUBA

Sign in / Sign up

Export Citation Format

Share Document