scholarly journals Fabrication and Characterization of Low-Cost Poly(Vinyl Alcohol) Composite Membrane for Low Temperature Fuel Cell Application

Author(s):  
Ruhilin Nasser ◽  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
Arif Akmal Mohamed Hassan

The urge to find alternative sources of energy is crucial as the source of fossil fuel shows a high number of depletion over the year. Compared to other alternatives sources, fuel cell is high at rank as it generates no harmful gases to the surrounding and high in efficiency. The performance of this fuel cell is affected by several factors and one of it is the permeability of proton exchange membrane (PEM). Nafion® is known to be used as the PEM in fuel cells, however due to its high price, polyvinyl alcohol membrane was selected in this study to substitute the Nafion® as it was low in price and excellent in chemical and mechanical strength. Poly (vinyl alcohol) composite membrane was prepared and crosslinked with sulfosuccinic acid (SSA). To further increase the proton conductivity of the membrane, graphene oxide (GO) with 1, 2 and 3 weight percentage was incorporated into the polymer membrane. All the membranes were characterized by using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), water uptake measurement, contact angle, ion exchange capacity and proton conductivity respectively. Synthesized membranes show low water uptake and contact angle as GO loading was increased. IEC value and water swelling were found to be increased with increasing of GO loading. The proton conductivity of the membrane increases as more GO was incorporated into PVA-SSA and achieved its highest conductivity at 0.020746 S cm-1 with 2 wt. % of GO incorporation.

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 675
Author(s):  
Nur Adiera Hanna Rosli ◽  
Kee Shyuan Loh ◽  
Wai Yin Wong ◽  
Tian Khoon Lee ◽  
Azizan Ahmad

Chitosan is one of the natural biopolymers that has been studied as an alternative material to replace Nafion membranes as proton change membranes. Nevertheless, unmodified chitosan membranes have limitations including low proton conductivity and mechanical stability. The aim of this work is to study the effect of modifying chitosan through polymer blending with different compositions and the addition of inorganic filler on the microstructure and physical properties of N-methylene phosphonic chitosan/poly (vinyl alcohol) (NMPC/PVA) composite membranes. In this work, the NMPC biopolymer and PVA polymer are used as host polymers to produce NMPC/PVA composite membranes with different compositions (30–70% NMPC content). Increasing NMPC content in the membranes increases their proton conductivity, and as NMPC/PVA-50 composite membrane demonstrates the highest conductivity (8.76 × 10−5 S cm−1 at room temperature), it is chosen to be the base membrane for modification by adding hygroscopic silicon dioxide (SiO2) filler into its membrane matrix. The loading of SiO2 filler is varied (0.5–10 wt.%) to study the influence of filler concentration on temperature-dependent proton conductivity of membranes. NMPC/PVA-SiO2 (4 wt.%) exhibits the highest proton conductivity of 5.08 × 10−4 S cm−1 at 100 °C. In conclusion, the study shows that chitosan can be modified to produce proton exchange membranes that demonstrate enhanced properties and performance with the addition of PVA and SiO2.


2021 ◽  
Vol 317 ◽  
pp. 440-446
Author(s):  
Siti Aminah Mohd Noor ◽  
Lee Tian Khoon ◽  
Mohd Sukor Su'ait ◽  
Siow Yook Peng ◽  
Kee Shyuan Loh ◽  
...  

The cost of conventional membrane, Nafion® used in the current proton exchange membrane fuel cell (PEMFC) is high. Thus different alternatives are being proposed as an option of Nafion® membrane in PEMFC application. In this study, poly(vinyl alcohol)/ N-methylene phosphonic chitosan/ 2-hydroxyethylammonium formate (PVA/NMPC/2-HEAF) proton exchange membrane was prepared using the solution casting technique. The effects of 2-HEAF concentrations (0 – 20 wt.%) on crosslinked and non-crosslinked PVA/NMPC/2-HEAF membrane were studied. The characterizations of PVA/NMPC/2-HEAF membrane were done by Fourier transformation infrared spectroscopy (ATR-FTIR), water uptake test, ion exchange capacity (IEC) analysis and electrochemical impedance spectroscopy (EIS). The crosslinkages (-O-CH2-O-) formed using formaldehyde crosslinking agent were confirmed through the formation of new peak by –CH2- stretching at around 2863 cm-1 and the increased intensity of C-O stretching absorption. Crosslinked PVA/NMPC/5 wt.% 2-HEAF membrane showed the highest percentage of water uptake and IEC value. The EIS result agrees with the water uptake and IEC analysis where crosslinked PVA/NMPC/5 wt.% 2-HEAF showed the highest ionic conductivity of 5.44 × 10-5 S cm-1. This is due to the plasticization effect of 2-HEAF that softened the polymer chains and which it also provided more charge carriers to increase the ion mobility in the membrane.


2016 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Siti Wafiroh ◽  
Suyanto Suyanto ◽  
Yuliana Yuliana

AbstrakDi era globalisasi ini, kebutuhan bahan bakar fosil semakin meningkat dan ketersediannya semakin menipis. Oleh karena itu, dibutuhkan bahan bakar alternatif seperti Proton Exchange Membrane Fuel Cell (PEMFC). Tujuan dari penelitian ini adalah membuat dan mengkarakterisasi membran komposit kitosan-sodium alginat dari rumput laut coklat (Sargassum sp.) terfosforilasi sebagai Proton Exchange Membrane Fuel Cell (PEMFC). PEM dibuat dengan 4 variasi perbandingan konsentrasi antara kitosan dengan sodium alginat 8:0, 8:1, 8:2, dan 8:4 (b/b). Membran komposit kitosan-sodium alginat difosforilasi dengan STPP 2N. Karakterisasi PEM meliputi: uji tarik, swelling air, kapasitas penukar ion, FTIR, SEM, permeabilitas metanol, dan konduktivitas proton. Berdasarkan hasil analisis tersebut, membran yang optimal adalah perbandingan 8:1 (b/b) dengan nilai modulus young sebesar 0,0901 kN/cm2, swelling air sebesar 19,14 %, permeabilitas metanol sebesar 72,7 x 10-7, dan konduktivitas proton sebesar 4,7 x 10-5 S/cm. Membran komposit kitosan-sodium alginat terfosforilasi memiliki kemampuan yang cukup baik untuk bisa diaplikasikan sebagai membran polimer elektrolit dalam PEMFC. Kata kunci: kitosan, sodium alginat, terfosforilasi, PEMFC  AbstractIn this globalization era, the needs of fossil fuel certainly increases, but its providence decreases. Therefore, we need alternative fuels such as Proton Exchange Membrane Fuel Cell (PEMFC). The purpose of this study is preparationand characterization of phosphorylated chitosan-sodium alginate composite membrane from brown seaweed (Sargassum sp.) as Proton Exchange Membrane Fuel Cell (PEMFC). PEM is produced with 4 variations of concentration ratio between chitosan and sodium alginate 8:0, 8:1, 8:2, and 8:4 (w/w). Chitosan-sodium alginate composite membrane phosphorylated with 2 N STPP. The characterization of PEM include: tensile test, water swelling, ion exchange capacity, FTIR, SEM, methanol permeability, and proton conductivity. Based on the analysis result, the optimal membrane is ratio of 8:1 (w/w) with the value of Young’s modulus about 0.0901 kN/cm2, water swelling at 19.14%, methanol permeability about 72.7 x 10-7, and proton conductivity about 4.7 x 10-5 S/cm. The phosphorylated chitosan-sodium alginate composite membrane has good potentials for the application of the polymer electrolyte membrane in PEMFC. Keywords: chitosan, sodium alginate, phosphorylated, PEMFC


2015 ◽  
Vol 1735 ◽  
Author(s):  
Xu Liu ◽  
Xiaoyu Meng ◽  
Chuanming Shi ◽  
Jiangbei Huo ◽  
Ziqing Cai ◽  
...  

ABSTRACTGraphene oxide (GO) is one of the most attractive inorganic nanofillers in proton exchange membranes (PEMs) for its large specific surface area and high proton conductivity. The proton conductivity of GO nanosheet is known to be orders of magnitude greater than the bulk GO, thus it is essential to improve the dispersion of GO nanosheets in the PEM matrix to achieve higher conductivity. In this study, we report a facile and effective method to fabricate a GO/sulfonated poly ether ether ketone (SPEEK) composite membrane with well-dispersed GO nanosheets in SPEEK matrix by using electrospinning technique for direct methanol fuel cell application. The composite membrane exhibits improved proton conductivity, dimensional stability and methanol barrier property due to the presence of well-dispersed GOs. It is believed that the GO nanosheets can not only induce continuous channels for proton-conducting via Grotthuss mechanism, but also act as methanol barriers to hinder the methanol molecules from passing through the membrane.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47536-47544 ◽  
Author(s):  
Rajender Singh Malik ◽  
Udit Soni ◽  
Sampat Singh Chauhan ◽  
Pawan Verma ◽  
Veena Choudhary

Superior thermally, hydrolytically and mechanically stable heat treated functionalized quantum dot modified PVA membranes with enhanced proton conductivity are reported.


Sign in / Sign up

Export Citation Format

Share Document