Simulation of Single Cell Trapping Via Hydrodynamic Manipulation

2014 ◽  
Vol 69 (8) ◽  
Author(s):  
Amelia Ahmad Khalili ◽  
Mohd Ariffanan Mohd Basri ◽  
Mohd Ridzuan Ahmad

Microfluidic devices are important for the single cell analysis such as cell mechanical and electrical characterization. Single cell characterization could be related to many significant applications including early disease diagnosis. However to perform the single cell manipulation, firstly a single cell have to be isolated and a platform for the cell manipulation have to be provided. One of the methods to trap a single cell is by using hydrodynamic trapping in the microfluidic channel. This study provides a finite element model for single cell trapping for a yeast cell model. The objectives of the simulations are to obtain the appropriate channels’ geometry and optimized ratio of the fluid’s inlet and suction flow rate to trap a single yeast cell. Trap channel was designed to trap a 5μm yeast cell with a suction hole placed in the end of the trap channel. Design geometry and the ratio of fluid flow rates for the cell trapping model were studied using the hydrodynamic resistance concept. The analysis was carried out using numerical solutions from the finite element ABAQUS-FEA software. Using the cell trapping model, a single yeast cell able to be trapped into the trap channel with optimized channel’s suction hole’s geometry and appropriate fluid’s inlet and suction flow rate ratio. The appropriate QTrap/QMain ratio to perform cell trapping using hydrodynamic resistance concept is the ratio value above 1. A 5 μm yeast cell model able to be trap inside a trap channel with the height, width and length of 7 μm by manipulating the suction hole’s flow rate of  1.5 and 2.0 μm of height, 7 and 3 μm of length and width, respectively which situated at the centre edge of the trap channel.

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 51 ◽  
Author(s):  
Vigneswaran Narayanamurthy ◽  
Tze Lee ◽  
Al’aina Khan ◽  
Fahmi Samsuri ◽  
Khairudin Mohamed ◽  
...  

Microfluidics-based biochips play a vital role in single-cell research applications. Handling and positioning of single cells at the microscale level are an essential need for various applications, including genomics, proteomics, secretomics, and lysis-analysis. In this article, the pipette Petri dish single-cell trapping (PP-SCT) technique is demonstrated. PP-SCT is a simple and cost-effective technique with ease of implementation for single cell analysis applications. In this paper a wide operation at different fluid flow rates of the novel PP-SCT technique is demonstrated. The effects of the microfluidic channel shape (straight, branched, and serpent) on the efficiency of single-cell trapping are studied. This article exhibited passive microfluidic-based biochips capable of vertical cell trapping with the hexagonally-positioned array of microwells. Microwells were 35 μm in diameter, a size sufficient to allow the attachment of captured cells for short-term study. Single-cell capture (SCC) capabilities of the microfluidic-biochips were found to be improving from the straight channel, branched channel, and serpent channel, accordingly. Multiple cell capture (MCC) was on the order of decreasing from the straight channel, branch channel, and serpent channel. Among the three designs investigated, the serpent channel biochip offers high SCC percentage with reduced MCC and NC (no capture) percentage. SCC was around 52%, 42%, and 35% for the serpent, branched, and straight channel biochips, respectively, for the tilt angle, θ values were between 10–15°. Human lung cancer cells (A549) were used for characterization. Using the PP-SCT technique, flow rate variations can be precisely achieved with a flow velocity range of 0.25–4 m/s (fluid channel of 2 mm width and 100 µm height). The upper dish (UD) can be used for low flow rate applications and the lower dish (LD) for high flow rate applications. Passive single-cell analysis applications will be facilitated using this method.


Author(s):  
Francesca Bragheri ◽  
Roberto Osellame

AbstractSingle cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Huichao Chai ◽  
Yongxiang Feng ◽  
Fei Liang ◽  
Wenhui Wang

Successful single-cell isolation is a pivotal technique for subsequent biological and chemical analysis of single cells. Although significant advances have been made in single-cell isolation and analysis techniques, most passive...


Author(s):  
L. Ferrara ◽  
F. Bragheri ◽  
P. Minzioni ◽  
I. Cristiani ◽  
K. C. Vishnubhatla ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
B. Deng ◽  
X. F. Li ◽  
D. Y. Chen ◽  
L. D. You ◽  
J. B. Wang ◽  
...  

Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.


2009 ◽  
Vol 24 (12) ◽  
pp. 3637-3644 ◽  
Author(s):  
Ling-Sheng Jang ◽  
Pao-Hua Huang ◽  
Kung-Chieh Lan

2016 ◽  
Vol 32 (3) ◽  
pp. 422-429 ◽  
Author(s):  
Miao Yu ◽  
Zongzheng Chen ◽  
Cheng Xiang ◽  
Bo Liu ◽  
Handi Xie ◽  
...  

Lab on a Chip ◽  
2010 ◽  
Vol 10 (7) ◽  
pp. 857 ◽  
Author(s):  
Stefan Kobel ◽  
Ana Valero ◽  
Jonas Latt ◽  
Philippe Renaud ◽  
Matthias Lutolf

Sign in / Sign up

Export Citation Format

Share Document