scholarly journals Pipette Petri Dish Single-Cell Trapping (PP-SCT) in Microfluidic Platforms: A Passive Hydrodynamic Technique

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 51 ◽  
Author(s):  
Vigneswaran Narayanamurthy ◽  
Tze Lee ◽  
Al’aina Khan ◽  
Fahmi Samsuri ◽  
Khairudin Mohamed ◽  
...  

Microfluidics-based biochips play a vital role in single-cell research applications. Handling and positioning of single cells at the microscale level are an essential need for various applications, including genomics, proteomics, secretomics, and lysis-analysis. In this article, the pipette Petri dish single-cell trapping (PP-SCT) technique is demonstrated. PP-SCT is a simple and cost-effective technique with ease of implementation for single cell analysis applications. In this paper a wide operation at different fluid flow rates of the novel PP-SCT technique is demonstrated. The effects of the microfluidic channel shape (straight, branched, and serpent) on the efficiency of single-cell trapping are studied. This article exhibited passive microfluidic-based biochips capable of vertical cell trapping with the hexagonally-positioned array of microwells. Microwells were 35 μm in diameter, a size sufficient to allow the attachment of captured cells for short-term study. Single-cell capture (SCC) capabilities of the microfluidic-biochips were found to be improving from the straight channel, branched channel, and serpent channel, accordingly. Multiple cell capture (MCC) was on the order of decreasing from the straight channel, branch channel, and serpent channel. Among the three designs investigated, the serpent channel biochip offers high SCC percentage with reduced MCC and NC (no capture) percentage. SCC was around 52%, 42%, and 35% for the serpent, branched, and straight channel biochips, respectively, for the tilt angle, θ values were between 10–15°. Human lung cancer cells (A549) were used for characterization. Using the PP-SCT technique, flow rate variations can be precisely achieved with a flow velocity range of 0.25–4 m/s (fluid channel of 2 mm width and 100 µm height). The upper dish (UD) can be used for low flow rate applications and the lower dish (LD) for high flow rate applications. Passive single-cell analysis applications will be facilitated using this method.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
B. Deng ◽  
X. F. Li ◽  
D. Y. Chen ◽  
L. D. You ◽  
J. B. Wang ◽  
...  

Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.


2014 ◽  
Vol 69 (8) ◽  
Author(s):  
Amelia Ahmad Khalili ◽  
Mohd Ariffanan Mohd Basri ◽  
Mohd Ridzuan Ahmad

Microfluidic devices are important for the single cell analysis such as cell mechanical and electrical characterization. Single cell characterization could be related to many significant applications including early disease diagnosis. However to perform the single cell manipulation, firstly a single cell have to be isolated and a platform for the cell manipulation have to be provided. One of the methods to trap a single cell is by using hydrodynamic trapping in the microfluidic channel. This study provides a finite element model for single cell trapping for a yeast cell model. The objectives of the simulations are to obtain the appropriate channels’ geometry and optimized ratio of the fluid’s inlet and suction flow rate to trap a single yeast cell. Trap channel was designed to trap a 5μm yeast cell with a suction hole placed in the end of the trap channel. Design geometry and the ratio of fluid flow rates for the cell trapping model were studied using the hydrodynamic resistance concept. The analysis was carried out using numerical solutions from the finite element ABAQUS-FEA software. Using the cell trapping model, a single yeast cell able to be trapped into the trap channel with optimized channel’s suction hole’s geometry and appropriate fluid’s inlet and suction flow rate ratio. The appropriate QTrap/QMain ratio to perform cell trapping using hydrodynamic resistance concept is the ratio value above 1. A 5 μm yeast cell model able to be trap inside a trap channel with the height, width and length of 7 μm by manipulating the suction hole’s flow rate of  1.5 and 2.0 μm of height, 7 and 3 μm of length and width, respectively which situated at the centre edge of the trap channel.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zishuai Li ◽  
Simin Cheng ◽  
Qiaohong Lin ◽  
Wenbo Cao ◽  
Jing Yang ◽  
...  

AbstractSingle-cell analysis is critical to revealing cell-to-cell heterogeneity that would otherwise be lost in ensemble analysis. Detailed lipidome characterization for single cells is still far from mature, especially when considering the highly complex structural diversity of lipids and the limited sample amounts available from a single cell. We report the development of a general strategy enabling single-cell lipidomic analysis with high structural specificity. Cell fixation is applied to retain lipids in the cell during batch treatments prior to single-cell analysis. In addition to tandem mass spectrometry analysis revealing the class and fatty acyl-chain for lipids, batch photochemical derivatization and single-cell droplet treatment are performed to identify the C=C locations and sn-positions of lipids, respectively. Electro-migration combined with droplet-assisted electrospray ionization enables single-cell mass spectrometry analysis with easy operation but high efficiency in sample usage. Four subtypes of human breast cancer cells are correctly classified through quantitative analysis of lipid C=C location or sn-position isomers in ~160 cells. Most importantly, the single-cell deep lipidomics strategy successfully discriminates gefitinib-resistant cells from a population of wild-type human lung cancer cells (HCC827), highlighting its unique capability to promote precision medicine.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (13) ◽  
pp. 2440-2449 ◽  
Author(s):  
Soo Hyeon Kim ◽  
Teruo Fujii

The electroactive double well-array consists of trap-wells for highly efficient single-cell trapping using dielectrophoresis (cell capture efficiency of 96 ± 3%) and reaction-wells that confine cell lysates for analysis of intracellular materials from single cells.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1253
Author(s):  
Yilin Deng ◽  
Ying Guo ◽  
Bin Xu

Microfluidic technology has emerged from the MEMS (Micro-Electro-Mechanical System)-technology as an important research field. During the last decade, various microfluidic technologies have been developed to open up a new era for biological studies. To understand the function of single cells, it is very important to monitor the dynamic behavior of a single cell in a living environment. Cell trapping in single cell analysis is urgently demanded There have been some review papers focusing on drug screen and cell analysis. However, cell trapping in single cell analysis has rarely been covered in the previous reviews. The present paper focuses on recent developments of cell trapping and highlights the mechanisms, governing equations and key parameters affecting the cell trapping efficiency by contact-based and contactless approach. The applications of the cell trapping method are discussed according to their basic research areas, such as biology and tissue engineering. Finally, the paper highlights the most promising cell trapping method for this research area.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 409 ◽  
Author(s):  
Bing Deng ◽  
Heyi Wang ◽  
Zhaoyi Tan ◽  
Yi Quan

The single-cell capture microfluidic chip has many advantages, including low cost, high throughput, easy manufacturing, integration, non-toxicity and good stability. Because of these characteristics, the cell capture microfluidic chip is increasingly becoming an important carrier on the study of life science and pharmaceutical analysis. Important promises of single-cell analysis are the paring, fusion, disruption and analysis of intracellular components for capturing a single cell. The capture, which is based on the fluid dynamics method in the field of micro fluidic chips is an important way to achieve and realize the operations mentioned above. The aim of this study was to compare the ability of three fluid dynamics-based microfluidic chip structures to capture cells. The effects of cell growth and distribution after being captured by different structural chips and the subsequent observation and analysis of single cells on the chip were compared. It can be seen from the experimental results that the microfluidic chip structure most suitable for single-cell capture is a U-shaped structure. It enables single-cell capture as well as long-term continuous culture and the single-cell observation of captured cells. Compared to the U-shaped structure, the cells captured by the microcavity structure easily overlapped during the culture process and affected the subsequent analysis of single cells. The flow shortcut structure can also be used to capture and observe single cells, however, the shearing force of the fluid caused by the chip structure is likely to cause deformation of the cultured cells. By comparing the cell capture efficiency of the three chips, the reagent loss during the culture process and the cell growth state of the captured cells, we are provided with a theoretical support for the design of a single-cell capture microfluidic chip and a reference for the study of single-cell capture in the future.


2016 ◽  
Author(s):  
Jinzhou Yuan ◽  
Peter A. Sims

Recent developments have enabled rapid, inexpensive RNA sequencing of thousands of individual cells from a single specimen, raising the possibility of unbiased and comprehensive expression profiling from complex tissues. Microwell arrays are a particularly attractive microfluidic platform for single cell analysis due to their scalability, cell capture efficiency, and compatibility with imaging. We report an automated microwell array platform for single cell RNA-Seq with significantly improved performance over previous implementations. We demonstrate cell capture efficiencies of >50%, compatibility with commercially available barcoded mRNA capture beads, and parallel expression profiling from thousands of individual cells. We evaluate the level of cross-contamination in our platform by both tracking fluorescent cell lysate in sealed microwells and with a human-mouse mixed species RNA-Seq experiment. Finally, we apply our system to comprehensively assess heterogeneity in gene expression of patient-derived glioma neurospheres and uncover subpopulations similar to those observed in human glioma tissue.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 104 ◽  
Author(s):  
Tao Luo ◽  
Lei Fan ◽  
Rong Zhu ◽  
Dong Sun

In a forest of a hundred thousand trees, no two leaves are alike. Similarly, no two cells in a genetically identical group are the same. This heterogeneity at the single-cell level has been recognized to be vital for the correct interpretation of diagnostic and therapeutic results of diseases, but has been masked for a long time by studying average responses from a population. To comprehensively understand cell heterogeneity, diverse manipulation and comprehensive analysis of cells at the single-cell level are demanded. However, using traditional biological tools, such as petri-dishes and well-plates, is technically challengeable for manipulating and analyzing single-cells with small size and low concentration of target biomolecules. With the development of microfluidics, which is a technology of manipulating and controlling fluids in the range of micro- to pico-liters in networks of channels with dimensions from tens to hundreds of microns, single-cell study has been blooming for almost two decades. Comparing to conventional petri-dish or well-plate experiments, microfluidic single-cell analysis offers advantages of higher throughput, smaller sample volume, automatic sample processing, and lower contamination risk, etc., which made microfluidics an ideal technology for conducting statically meaningful single-cell research. In this review, we will summarize the advances of microfluidics for single-cell manipulation and analysis from the aspects of methods and applications. First, various methods, such as hydrodynamic and electrical approaches, for microfluidic single-cell manipulation will be summarized. Second, single-cell analysis ranging from cellular to genetic level by using microfluidic technology is summarized. Last, we will also discuss the advantages and disadvantages of various microfluidic methods for single-cell manipulation, and then outlook the trend of microfluidic single-cell analysis.


2019 ◽  
Vol 29 (3) ◽  
pp. 035004 ◽  
Author(s):  
Weihua Fan ◽  
Miaomiao Qiao ◽  
Yan Jin ◽  
Hongbo Zhou ◽  
Yuqing Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document