Application of Low-Cost GPS Tools and Techniques for Landslide Monitoring: A Review

2014 ◽  
Vol 71 (4) ◽  
Author(s):  
E.E. Eyo ◽  
T. A. Musa ◽  
K. M. Omar ◽  
K. M. Idris ◽  
T. Bayrak ◽  
...  

The main goal of our ongoing research is to design a low-cost continuous monitoring system for landslide investigation using the Reverse RTK (RRTK) technique. The main objectives of this paper are to review the existing Global Positioning System (GPS) tools and techniques used for landslide monitoring, and to propose a novel low-cost landslide monitoring technique using Reverse RTK GPS. A general overview of GPS application in landslide monitoring is presented, followed by a review of GPS deformation monitoring systems and some of the factors used for their categorization. Finally, the concept, principles and advantages of the proposed new landslide monitoring system are discussed.

Author(s):  
Hemant Kumar Gianey ◽  
Mumtaz Ali ◽  
V. Vijayakumar ◽  
Ashutosh Sharma ◽  
Rajiv Kumar

Accuracy and total design and implementation cost of the GPS framework determine the viability of GPS based projects. As the greater part of the advanced framework including telemetry, IoT, Cloud, and AUTOSAR frameworks use GPS to get exact outcomes, finding a software-controlled error correction becomes important. With the execution of open source library such as RTKLIB will help in controlling and revising GPS blunders. The project utilizes the RTKLIB along with two stations for better accuracy. The RTK-GPS framework works under Linux environment, which is embedded in the Beagleboard. The communication between the GPS system is set up utilizing both serial communication protocol and TCP/IP suite. To get high precision inside the network, two GPS modules are utilized. One of them will be mounted on the rover and another GPS is the base station of the setup. Both the GPS will have a double radio wire setup to increase the reception level to reduce the noise and get centimeter-level precision. For long-range communication, Rover utilizes Wi-Fi with TCP/IP stack protocol. In this research paper, setup is intended to accomplish the centimeter level precision through libraries in a Linux environment. The design will be set up and tried on a college campus under various conditions with different error parameters to acquire a low cost and centimeter level GPS accuracy.


2021 ◽  
Vol 2 (2) ◽  
pp. 104-124
Author(s):  
Muhammad Faisal

The purpose of this research is to design an attendance system using Global Positioning System (GPS) technology, as a useful solution. At PT. Cipta Anugrah Musi for the marketing staff to still be able to do attendance without using a fingerprint attendance machine. Based on the results of research and discussion on the marketing employee attendance monitoring system in the form of this android mobile, the following conclusions can be drawn. From the black box testing that has been done, it can be concluded that the employee attendance monitoring system can run well and there are no problems. GPS technology can provide information on where to take employee photos so that it is easy to find out the position of the employee's absence at that time to avoid cheating in attendance.


2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Khushboo Qayyum ◽  
Idrees Zaman ◽  
Anna Förster

Abstract In oceans, fish usually live in an environment that is best suited for their growth. When these fish are introduced into man-made environment, e.g. in mariculture and aquaculture set-ups, the physical parameters might stray from their ideal values, resulting in improper growth and undesired outcomes. Hence, to prevent these undesirable outcomes, continuous monitoring of the physical parameters of the water such as pH, temperature and dissolved oxygen is required. In this work, we present a system called H2O sense, which continuously monitors the physical parameters of the water in tanks and alerts the user in case the values deviate from ideal. We use only low-power, low-cost hardware and open-source development tools, which makes the system easily applicable to various settings. The deployment of our system in the Maritime Laboratory of the University of Namibia shows its efficacy. Furthermore, we evaluate in detail the performance of our system and discuss its applicability in similar challenged environments.


2018 ◽  
Vol 7 (2.29) ◽  
pp. 792 ◽  
Author(s):  
Syafiq Sukor ◽  
Anuar Ahmad

Recently there a lot of improvement in digital photogrammetry and this allow photogrammetry to become faster and cheaper . This study discuss about two type of low cost camera which is the compact camera (Canon Power Shot SX230 ) and action camera (Xiaomi yi) where both of them have different lens distortion. This study is conducted within UTM (Universiti Teknologi Malaysia) Skudai campus at Kolej  Tun Razak. Both of the Canon Power Shot SX230 and Xiaomi yi camera would be attach to the UAV  to take aerial photo with three different altitude which is 60 meter, 80 meter and 100 meter with a similar flight path. Check point (CPs) and Ground control point (GCPs) were also established using rapid static technique of Global Positioning System (GPS) and Total Station. The Canon Power Shot SX230 and Xiaomi yi camera is then calibrated using checkboard calibration this is done by using Agisoft  Lens software. Then all of the pictures that been taken by the Canon Power Shot SX230 and the Xiaomi yi would be processed by using Agisoft Photoscan software to generate Digital Elevation Model (DEM), orthophoto and contour line. The accuracy of DEM was determined based on Root Mean Squared Error (RMSE) value. Both of the result is then analyze visually and statically. Overall both of the camera gives a slight different in accuracy. 


Sign in / Sign up

Export Citation Format

Share Document