MULTISPECTRAL IMAGING SYSTEM FOR QUANTITATIVE ASSESSMENT OF TRANSCUTANEOUS BLOOD OXYGEN SATURATION

2015 ◽  
Vol 77 (7) ◽  
Author(s):  
Sheena P. Philimon ◽  
Audrey K. C. Huong ◽  
Xavier T. I. Ngu

This paper presents the use of Extended Modified Lambert Beer (EMLB) model for quantification of transcutaneous blood oxygen saturation (StO2) via a noninvasive approach. Continuous wave (CW) reflectance spectroscopy system is employed for measurement of intensity reflected from left index finger of an Asian nonsmoking volunteer at resting condition. Multispectral images captured in the wavelength range of 520 − 600 nm at an interval of 10 nm are mathematically analyzed and fitted using the developed fitting algorithm to give the best estimation of StO2. The result from this preliminary study revealed a mean StO2 value of 75 ± 5% for the participating individual, which value agreed considerably well with that presented in previous works. This work concluded that the developed spectroscopy system and quantification technique can potentially be used as an alternative means to clinical assessment of wound healing progress

2017 ◽  
Vol 10 (03) ◽  
pp. 1750004 ◽  
Author(s):  
Audrey Huong ◽  
Sheena Philimon ◽  
Xavier Ngu

This paper investigates the appropriate range of values for the transcutaneous blood oxygen saturation (StO2) of granulating tissues and the surrounding tissue that can ensure timely wound recovery. This work has used a multispectral imaging system to collect wound images at wavelengths ranging between 520[Formula: see text]nm and 600[Formula: see text]nm with a resolution of 10[Formula: see text]nm. As part of this research, a pilot study was conducted on three injured individuals with superficial wounds of different wound ages at different skin locations. The StO2 value predicted for the examined wounds using the Extended Modified Lambert–Beer model revealed a mean StO2 of [Formula: see text]% compared to [Formula: see text]% at the surrounding tissues, and [Formula: see text]% for control sites. These preliminary results contribute to the existing knowledge on the possible range and variation of wound bed StO2 that are to be used as indicators of the functioning of the vasomotion system and wound health. This study has concluded that a high StO2 of approximately 60% and a large fluctuation in this value should precede a good progression in wound healing.


2016 ◽  
Vol 63 (6) ◽  
pp. 1091-1098 ◽  
Author(s):  
Dangdang Shao ◽  
Chenbin Liu ◽  
Francis Tsow ◽  
Yuting Yang ◽  
Zijian Du ◽  
...  

2018 ◽  
Vol 1049 ◽  
pp. 012063
Author(s):  
H. L. Kam ◽  
Audrey Huong ◽  
Nur Anida Jumadi ◽  
N. Ibrahim ◽  
Wan Mahani Hafizah Wan Mahmud ◽  
...  

Instruments ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 12
Author(s):  
Emanuel R. de Carvalho ◽  
Richelle J. M. Hoveling ◽  
Cornelis J. F. van Noorden ◽  
Reinier O. Schlingemann ◽  
Maurice C. G. Aalders

Application of functional imaging in ophthalmology requires efficient imaging techniques that can detect and quantify chromophores to visualise processes in vivo. The aim of the present study was to develop and evaluate a fast and affordable imaging system. We describe an eight-band retinal multispectral imaging (MSI) system and compare it with a hyperspectral imaging (HSI) device. Determination of blood oxygen saturation was studied as proof of principle. Reflectance of incident light is measured as 1/absorbance at different wavelengths between 440 nm and 580 nm. Both devices have incorporated optical bandpass filters in a mydriatic fundus camera. The MSI system scans the retina at eight pre-defined wavelengths specific for the spectrum of haemoglobin. The HSI system acquires a full scan from 480 to 720 nm in 5 nm steps. A simple assessment of the ratio between the absorbance peaks of oxygenated haemoglobin (HbO2) and reduced haemoglobin (HbR) was not suitable for generating validated oxygenation maps of the retina. However, a correction algorithm that compares the measured reflectance with reflectance spectra of fully oxygenated and fully deoxygenated blood allowed our MSI setup to estimate relative oxygen saturation at higher levels, but underestimated relative oxygen saturation at lower levels. The MSI device generated better quality images than the HSI device. It allows customisation with filter sets optimised for other chromophores of interest, and augmented with extrinsic contrast imaging agents, it has the potential for a wider range of ophthalmic molecular imaging applications.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 422-422
Author(s):  
Rebecca L Moore ◽  
Cierrah J Kassetas ◽  
Leslie A LeKatz ◽  
Bryan W Neville

Abstract One hundred and twenty-six yearling angus steers (initial body weight 445.87 ± 7.13 kg) were utilized in a 2 x 2 factorial design to evaluate the impacts of bunk management and modified distillers grains plus solubles (mDGS) inclusion on feedlot performance, hydrogen sulfide concentrations and blood oxygen saturation. Treatments included bunk management strategy either control bunk management (CON; clean bunks at the time of next day’s feeding) or long bunk management (LONG; feed remaining at time of next day’s feeding), and two inclusion rates of mDGS either 25% or 50% (DM Basis). On d 0, 7, 14, 21, 28 and 35 rumen gas samples were collected via rumenocentesis, and arterial blood samples were collected on two steers from each pen. No differences (P ≥ 0.09) were observed for dry matter intake, average daily gain and gain-to-feed ratio for bunk management or mDGS inclusion. Hot carcass weight, ribeye area, marbling score and quality grade were not affected (P ≥ 0.48) by either bunk management or mDGS inclusion. Back fat was greater (P = 0.04) for CON steers compared to LONG (1.30 vs 1.12 ± 0.05cm, respectively), but was not affected (P = 0.59) by mDGS inclusion. Steers on CON had greater (P = 0.03) yield grades compared to LONG (3.21 vs 2.96 ± 0.11, respectively). Bunk management strategy did not impact hydrogen sulfide concentrations or blood oxygen saturation (P = 0.82). Hydrogen sulfide concentrations increased (P < 0.001) with increasing mDGS inclusion. Blood oxygen saturation was influenced by day of sampling (P = 0.01). Blood oxygen saturation was not affected (P = 0.07) by mDGS inclusion. The fact that ruminal hydrogen sulfide concentrations increased while blood oxygen saturation remained similar raises questions about the quantity of hydrogen sulfide and metabolic fate of excess hydrogen sulfide in the blood of ruminant animals.


Biofeedback ◽  
2012 ◽  
Vol 40 (4) ◽  
pp. 137-141 ◽  
Author(s):  
Christopher Gilbert

Small pulse oximeters have become widely available and can be useful for noninvasive monitoring of blood oxygen saturation by nonmedical personnel. When training control of breathing, an oximeter helps to reassure clients who hyperventilate that their oxygenation is adequate, offsetting their perception that they are not getting enough air. Low saturation may indicate a medical condition that impairs oxygen absorption. In that case, hyperventilation is a biological compensation that should not be tampered with.


Sign in / Sign up

Export Citation Format

Share Document