THE PRODUCTION OF BIOHYDROGEN AND BIOMETHANE FROM CASSAVA WASTEWATER UNDER MESOPHILIC ANAEROBIC FERMENTATION BY USING UPFLOW ANAEROBIC SLUDGE BLANKET REACTORS (UASB)

2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Patcharee Intanoo ◽  
Sumaeth Chavadej ◽  
Oijai Khongsumran

The main objective was to separately generate biohydrogen (H2) and biomethane (CH4) with the cassava wastewater via the upflow anaerobic sludge blanket reactors (UASB) under the mesophilic temperature (37 ºC). For the first part, the production of H2, the controlled system was managed on the fixed temperature (37 º C) and pH (5.5) included the varied organic concentration in term of chemical oxygen demand (COD) loading rates. As the proper COD loading rate of 25 kg/m3 d, H2 and carbon dioxide (CO2) were mainly generated gases which provided the highest specific H2 production rate of 0.39 l H2/l d and the highest H2 yield of 39.83 l H2/kg COD removed. For the second part, the effluent liquid that generated from the stage of H2 production on COD loading rate of 25 kg/m3 d was fed to the UASB with the fixed temperature (37 °C) and no pH control. The highest specific CH4 production rate of 0.91 l CH4/l d and the highest CH4 yield of 115.23 l CH4/kg COD removed were shown on the proper COD loading rate of 8 kg/m3 d.  

Author(s):  
Anwar Ahmad ◽  
Rumana Ghufran ◽  
Zularisam Abd. Wahid

Palm oil Mill Effluent (POME) with concentrated butyrate was treated in a 4.5 l upflow anaerobic sludge blanket reactor (UASBR), run over a range of influent concentrations (16.5–46.0 g-COD l−1), chemical oxygen demand (COD) loading rates (1.5–11.5 g-CODl−1d−1) and 11–4 days hydraulic retention time (HRT) at 37 °C by maintaining pH between 6.5–7.5. The process consistently removed 97–99% of COD at loading rates up to 1.5–4.8 g-COD l−1d−1 by varying HRT (11–7.2 days). Butyrate is an important intermediate in the anaerobic degradation of organic matter. In sulphate-depleted environment, butyrate in POME (BOD/COD ratio of 0.5) is β-oxidised to acetate and hydrogen, by obligate proton reducers in syntrophic association with hydrogen utilizing methanogens. The conversion of acetate to methane appeared to be rate limiting step. Maximum biogas (20.17 ll−1d−1) and methane production (16.2 ll−1d−1) were obtained at COD loading rate of 4.80 gl−1d−1and HRT of 7.2 days. The biogas and methane production were higher in the presence of butyrate compared to control. The methane content of the biogas was in the range of 70–80% throughout the study while in control it was 60–65%. Finding of this study clearly indicates the successful treatment of POME with butyrate in UASBR. Santrauka Palmių aliejaus gamybinės nuotekos (POME) su koncentruotu butiratu buvo apdorotos 4,5 l talpos aukštyn tekančio aerobinio dumblo plokšteliniame reaktoriuje (UASBR). Nuotekos tekėjo įvairių koncentracijų (16,5–46,0 g – ChDS 1−1), cheminio deguonies suvartojimo (ChDS) normos (1,5–11,5 g – ChDS 1−1d.−1). Hidraulinio sulaikymo trukmė (HRT) nuo 11 iki 4 dienų, kai temperatūra 37 °C, pH palaikant 6,5–7,5. Vykstant procesui nuolat buvo pašalinama 97–99% ChD, kai tiekimo ir pakrovimo sparta 1,5–4,8 g – ChDS 1−1d.−1 kintant HRT(11–7,2 d.). Butiratas yra svarbus tarpininkas organinių medžiagų anaerobinio skilimo procese. Sulfatas iš aplinkos, butiratas iš POME (BDS/ChDS santykis 0,5) yra acetato ir vandenilio β oksidatoriai, priverčiantys protonų reducentus sintrofinės sąveikos su vandeniliu metu utilizuoti metanogenus. Acetato virtimas metanu pasirodė esąs greitį ribojantis veiksnys. Daugiausia biodujų (20,17 l 1−1 d.−1) ir metano (16,2 l 1−1 d.−1) susidarė tada, kai suvartojamo ChD tiekimo greitis buvo 4,80 g 1−1d.−1, o HRT – 7,2 dienos. Daugiau biodujų ir metano susidarė dalyvaujant butiratui, palyginti su kontroliniu pavyzdžiu. Biodujose metano kiekis tyrimo metu svyravo 70–80%, o kontroliniame buvo 60–65%. Šis tyrimas aiškiai parodė, kad POME su butiratu UASBreaktoriuje apdorojamas sėkmingai.


1994 ◽  
Vol 30 (4) ◽  
pp. 97-104 ◽  
Author(s):  
Herbert H. P. Fang ◽  
Tin-Sang Kwong

The study was conducted over 265 days to study the feasibility of removing starch particulates from wastewater using an 8.5 L reactor which was a hybrid between the upflow anaerobic sludge blanket (UASB) and the anaerobic filter reactors. At pH 7.2-7.5 and 37°C, the reactor was effective for the removal of chemical oxygen demand (COD) from wastewater containing starch particulates equivalent to 5000 mglL of COD with 12 hours of retention time, corresponding to a loading rate of 10 g-COD/L.d. Despite their insoluble nature, the starch particulates did not cause noticeable adverse effeels on the granulation of biomass, probably due to its easy-to-biodegrade nature and the cautious startup strategy. About 5.8% of COD in wastewater remained in the effluent, 82.5% was converted to methane, and the remaining 11.7% was converted to granular biomass with an average sludge yield of 0.09 g-VSS/g-COD. The granules exhibited a layered microstructure. The methanogenic activity of the granular biomass was 0.86 g-methane-COD/g-VSS.d in the reactor, which was considerably lower than the 1.96 g-methane-COD/ g-VSS.d measured in serum vials with an abundant supply of substrate, suggesting that further increase of loading rates was possible for the hybrid reactor.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2012 ◽  
Vol 2 (2) ◽  
pp. 59-67 ◽  
Author(s):  
P. C. Vieira ◽  
M. von Sperling

We aimed to evaluate the performance and cost savings of an innovative design of a trickling filter (TF) for small population sizes, developed at the Federal University of Minas Gerais, Brazil referred to as an open trickling filter (OTF). The OTF had no side walls and no perforated bottom slab, and was applied for the post-treatment of sanitary sewage from an upflow anaerobic sludge blanket (UASB) reactor. The OTF had crushed-stone packing (3.5 m high) and was operated with an average surface hydraulic loading rate of 4.1 m3 m−2 d−1 and an average volumetric organic loading rate of 0.10 kg BOD m−3 d−1 (biochemical oxygen demand). The average concentrations obtained at the OTF effluent were 48 mg TSS L−1 (total suspended solids), 132 mg COD L−1 (chemical oxygen demand), 51 mg BOD L−1, 19 mg TKN L−1 (total Kjeldahl nitrogen), 16 mg NH4+-N L−1 and 10 mg NO3−-N L−1, complying with local discharge standards. Analysis of the construction costs indicated savings of 74% compared to conventional TF. Based on the performance, compactness, simplicity and reduced capital costs, it is believed that the proposed OTF is a good alternative for small communities, especially in developing countries.


2020 ◽  
Vol 81 (9) ◽  
pp. 1951-1960 ◽  
Author(s):  
C. S. Cabral ◽  
A. L. Sanson ◽  
R. J. C. F. Afonso ◽  
C. A. L. Chernicharo ◽  
J. C. Araújo

Abstract Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.


1999 ◽  
Vol 40 (1) ◽  
pp. 77-84 ◽  
Author(s):  
H. H. P. Fang ◽  
D. Wai-Chung Chung

Experiments were conducted in two 2.8 liter UASB (upflow anaerobic sludge blanket) reactors treating proteinaceous wastewaters at 37° and 55°C with 9 hours of hydraulic retention. Results showed that the mesophilic reactor consistently removed 83.5-85.1% of COD (chemical oxygen demand) at loading rates ranging 8-22 g COD l−1 d−1 (corresponding to 3000-8250 mg l−1 of proteinaceous COD in wastewater), whereas the thermophilic reactor removed only 68.5-82.7%. At 32 g COD l−1 d−1 (i.e. 12000 mg COD l−1), the removal efficiencies were lowered to 75.7% in the mesophilic reactor and 65.1% in the thermophilic reactor. At 42 g COD l−1 d−1, severe sludge washout occurred in the mesophilic reactor; at the same loading rate, the thermophilic reactor removed only 53.8% of COD even though sludge washout was under control. The degradation rate in the both reactors was limited by the initial hydrolysis of proteins. However, batch tests showed that thermophilic sludge had slightly higher methanogenic activities than mesophilic sludge in treating proteins and intermediate acids, except propionate. The sludge yields in mesophilic and thermophilic reactors were 0.066 and 0.099 g VSS g COD−1, respectively. Observations by scanning electron microscopy indicated that both types of sludge granules were of irregular shape. There was little noticeable difference between the two granules; both had neither a layered microstructure nor a predominant bacterial species.


2012 ◽  
Vol 65 (10) ◽  
pp. 1887-1894 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m3 d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.


Sign in / Sign up

Export Citation Format

Share Document