thermophilic conditions
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 63)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Richard Arthur ◽  
Sebastian Antonczyk ◽  
Sandra Off ◽  
Paul A. Scherer

Lignocellulosic residues, such as straw, are currently considered as candidates for biogas production. Therefore, straw fermentations were performed to quantitatively estimate methane yields and cell counts, as well as to qualitatively determine the microbiome. Six fully automated, continuously stirred biogas reactors were used: three mesophilic (41 °C) and three thermophilic (58 °C). They were fed every 8 h with milled wheat straw suspension in a defined, buffered salt solution, called ‘synthetic manure’. Total reflection X-ray fluorescence spectrometry analyses showed nickel and tungsten deficiency in the straw suspension. Supplementation of nickel and subsequently tungsten, or with an increasing combined dosage of both elements, resulted in a final concentration of approximately 0.1 mg/L active, dissolved tungsten ions, which caused an increase of the specific methane production, up to 63% under mesophilic and 31% under thermophilic conditions. That is the same optimal range for pure cultures of methanogens or bacteria found in literature. A simultaneous decrease of volatile fatty acids occurred. The Ni/W effect occurred with all three organic loading rates, being 4.5, 7.5, and 9.0 g volatile solids per litre and day, with a concomitant hydraulic retention time of 18, 10, or 8 days, respectively. A maximum specific methane production of 0.254 m3 CH4, under standard temperature and pressure per kg volatile solids (almost 90% degradation), was obtained. After the final supplementation of tungsten, the cell counts of methanogens increased by 300%, while the total microbial cell counts increased by only 3–62%. The mesophilic methanogenic microflora was shifted from the acetotrophic Methanosaeta to the hydrogenotrophic Methanoculleus (85%) by tungsten, whereas the H2-CO2-converter, Methanothermobacter, always dominated in the thermophilic fermenters.


2021 ◽  
Author(s):  
Dennison Bindhulekha Arya ◽  
Salom Gnana Thanga Vincent ◽  
J.K Reshma ◽  
Junaid Hassan Salahudeen

Abstract Estuarine sediments are best suited for bioprospecting cellulose degrading microorganisms because of continuous input of cellulosic carbon from rivers and terrestrial runoff, and such sediments act as a substrate for decomposition by microbes. Sediment samples were collected from thirteen stations of Ashtamudi estuary, a tropical Ramsar site during April 2016 and January 2017 and analysed for environmental variables such as temperature, pH, electrical conductivity, oxidation- reduction potential, sulphate, total organic carbon (Corg), carbohydrate, protein, lipid and labile organic matter. Microcosm experiments were conducted in the sediment samples to compare native and substrate-induced cellulase enzyme activities in mesophilic and thermophilic conditions added with crystalline cellulose and cellobiose as substrates. Abundance of cellulolytic anaerobes in the roll tubes was higher with cellobiose than crystalline cellulose. Substrate induced enzyme activity was more than native enzyme activity [0.0012±0.0001- 0.004±0.002 (April 2016) and 0.004±0.001- 0.161±0.002 mg glucose h-1 (January 2017)] in the sediment samples and cellulolytic activity was more pronounced in thermophilic conditions during April 2016. Redundancy analysis indicated that salinity was the highest determining factor for explaining variations among bacterial abundance and activity during April 2016 and sediment lipid content during January 2017. The study reveals that estuarine sediments can act as a potential source of thermophilic cellulase enzyme producing bacteria, which needs to be further explored owing to their vast industrial applications.


Author(s):  
Michael Helmut Hagemann ◽  
Ute Born ◽  
Elke Sprich ◽  
Luitgardis Seigner ◽  
Hans Oechsner ◽  
...  

AbstractThe citrus bark cracking viroid (CBCVd) was identified as causal agent for a severe stunting disease in hops. Viroids are highly stable parasitic RNAs, which can be easily transmitted by agricultural practices. Since CBCVd has recently been detected in two European countries a growing concern is that this pathogen will further spread and thereby threaten the European hop production. Biogas fermentation is used to sanitize hop harvest residues infected with pathogenic fungi. Consequently, the aim of this study was to test if biogas fermentation can contribute to viroid degradation at mesophilic (40 °C) and thermophilic (50 °C) conditions. Therefore, a duplex reverse transcription real-time PCR analysis was developed for CBCVd and HLVd detection in biogas fermentation residues. The non-pathogenic hop latent viroid (HLVd) was used as viroid model for the pathogenic CBCVd. The fermentation trials showed that HLVd was significantly degraded after 30 days at mesophilic or after 5 days at thermophilic conditions, respectively. However, sequencing revealed that HLVd was not fully degraded even after 90 days. The incubation of hop harvest residues at different temperatures between 20 and 70 °C showed that 70 °C led to a significant HLVd degradation after 1 day. In conclusion, we suggest combining 70 °C pretreatment and thermophilic fermentation for efficient viroid decontamination.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2376
Author(s):  
Aina Perez-Nakai ◽  
Alejandro Lerma-Canto ◽  
Ivan Domingez-Candela ◽  
Daniel Garcia-Garcia ◽  
Jose Miguel Ferri ◽  
...  

In this study, for the first time, Brazil nut seed oil was chemically modified with maleic anhydride to obtain maleinized Brazil nut seed oil (MBNO). The same process was developed to obtain maleinized hemp seed oil (MHO). The use of MBNO and MHO was studied as bio-based plasticizers by incorporating them with different contents ranging from 0 to 10 phr in a polylactic acid (PLA) matrix. By means of mechanical, thermal and thermomechanical characterization techniques, the properties of the different formulations were studied to evaluate the plasticizing effect of the MBNO and MHO. With the addition of both plasticizers, a significant increase in ductile properties was observed, reaching an increase in elongation at break of 643% with 7.5 phr MBNO and 771% with 10 phr MHO compared to neat PLA. In addition, it has been observed that the mechanical resistant properties do not decrease, since the oils enhance the crystallization of PLA by increasing the free volume between its chains and counteracting the effect. Finally, a disintegration test was carried out under thermophilic conditions at 58 °C for 27 days, demonstrating that the incorporation of MHO and MBNO does not significantly affect the biodegradability of neat PLA.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1423
Author(s):  
Hana Stiborova ◽  
Martina Kracmarova ◽  
Tereza Vesela ◽  
Marta Biesiekierska ◽  
Jindrich Cerny ◽  
...  

The reuse of stabilized (under thermophilic conditions) sewage sludge and manure on agricultural soils is a common practice. The aim of this study was to evaluate the risks associated with their repeated applications on the spread of pathogenic bacteria and antibiotic resistance genes (ARGs) that encode resistance to tetracycline (tetA and tetW), sulphonamide (sul1 and sul2), erythromycin (ermB), vancomycin (vanA) and integron genetic element (intI1). The trial fields has been regularly fertilized every 3rd year since 1996 with manure (MF; 330 kg N/ha) and sewage sludge (SF; 330 kg N/ha and SF3; 990 kg N/ha). Unfertilized soil (CF) served as a control. Samples were collected at different time points: (i) right before fertilization (which was also 3 years after the last fertilization), (ii) 5 months after fertilization, and (iii) 11 months after fertilization. The relative abundance of amplicon sequence variants (ASVs) assigned to potentially pathogenic bacteria was low (0.3% and 0.25% in sludge and manure, respectively), and no association with the application of these fertilizers was found. On the other hand, our data indicate that an increased relative abundance of the ARGs sul1 and tetW was significantly associated with these fertilizer applications, and sul1 was increased in all treatments regardless of the time. It is suggested that sul1 should be monitored in organically fertilized soils to prevent its spread and possible further accumulation in crops.


Sign in / Sign up

Export Citation Format

Share Document