overshoot and undershoot
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 11 (18) ◽  
pp. 8617
Author(s):  
Rupal Roy ◽  
Maidul Islam ◽  
MM Rashid ◽  
Shawgi Mounis ◽  
Md Manjurul Ahsan ◽  
...  

The aim of this work is to evaluate the output of a two-degree of freedom (DOF) proportional integral derivative (PID) controller for controlling elbow flexion and extension on an upper limb rehabilitation robot of an existing model. Since the usage of upper limb rehabilitation is increasing dramatically because of human impairment, 2DOF has been proposed in this work as a suitable controller. The 2DOF PID controller offers set-point-weight features and, hence, is fast in removing disturbance from the system and ensuring system stability. Importantly, as the system parameters are unknown in this work, the black-box model approach has been taken into consideration, using the MATLAB System identification toolbox to estimate a model. The best-fitted estimated model is then coupled with the proposed controller in the MATLAB/Simulink environment that, upon successful simulation works, leads, finally, to the hardware implementation. Three different amplitudes of sinusoidal current signals, such as 0.3 amps, 0.2 amps, and 0.1 amps, are applied for hardware measurements. Considering patients’ physical conditions. In this work, the 2DOF controller offers a fast transient response, settling time, negligible tracking error and 0% overshoot and undershoot.


2021 ◽  
Vol 16 (5) ◽  
pp. 766-772
Author(s):  
Le Luo ◽  
Ming-Zhong Yang

In this paper, a new discrete-time sliding mode predictive control (DSMPC) strategy with a PID sliding function is proposed for synchronous DC-DC Buck converter. The model predictive control, along with digital sliding mode control (DSMC) is able to further reducing the chattering phenomenon, steady-state error, overshoot, and undershoot of the converter output voltage. The proposed control method implementation only requires output error voltage evaluation. The effectiveness of the proposed DSMPC is proved through simulation results executed by the MATLAB/SIMULINK software. These results demonstrate its performance is superior to DSMC. The selected synchronous Buck converter in this paper has 380 V input voltage and 48 V output voltage that can be applied in sections of DC distribution systems.


2021 ◽  
Vol 13 (1) ◽  
pp. 28-39
Author(s):  
Hau Wah Lai ◽  
Cho Man Tsui ◽  
Hing Wah Li

This paper describes a procedure and a computer-aided system developed by the Standards and Calibration Laboratory (SCL) for verification of voltage dip and short interruption generators in accordance with the international standard IEC 61000-4-11:2004+AMD1:2017. The verification is done by calibrating the specified parameters and comparing with the requirements stated in the standard. The parameters that should be calibrated are the ratios of the residual voltages to the rated voltage, the accuracy of the phase angle at switching, and the rise time, fall time, overshoot and undershoot of the switching waveform. A specially built adapter is used to convert the high voltage output waveforms of the generators to lower level signals to be acquired by a digital oscilloscope. The other circuits required for the testing are also provided. In addition, the paper discusses the uncertainty evaluations for the measured parameters.


2020 ◽  
Vol 10 (23) ◽  
pp. 8388
Author(s):  
Ngoc Thang Bui ◽  
Thi My Tien Nguyen ◽  
Tran Thanh Nam Dinh ◽  
Quoc Cuong Bui ◽  
Tan Hung Vo ◽  
...  

Scanning acoustic microcopy (SAM) is widely used in biomedical and industrial applications in dermatology, ophthalmology, intravascular imaging, and small animal images, owing to SAM’s ability to photograph small structures with a good spatial resolution. One of the most important devices of this system is the pulser/receiver (P/R) (PRN-300, Ohlabs Corporation, Nam-gu Busan, Republic of Korea), which generates pulses to trigger a high-frequency transducer. This article presents the design of a pulse generator to excite high-frequency transducers with four channels. The characteristics of the pulses, such as time and frequency, can be reconfigured by using a high-speed field programmable gate array (FPGA). The configuration software was developed for communicating with the P/R device via a USB connector for easy, feasible pulse selection and real-time pulse management. Besides that, during the design and implementation of the hardware, we optimized the damping resistor value to reduce the overshoot and undershoot part of the signal, ensuring the best effect on the transducer signal. The test results show that unipolar pulses worked with transducers with frequencies over 100 MHz. The SAM systems can work simultaneously with multiple transducers, and the resulting images have different resolutions of regions.


2020 ◽  
Vol 32 (5) ◽  
pp. 865-886
Author(s):  
Shreya Saxena ◽  
Sridevi V. Sarma ◽  
Munther Dahleh

The ability to move fast and accurately track moving objects is fundamentally constrained by the biophysics of neurons and dynamics of the muscles involved. Yet the corresponding trade-offs between these factors and tracking motor commands have not been rigorously quantified. We use feedback control principles to quantify performance limitations of the sensorimotor control system (SCS) to track fast periodic movements. We show that (1) linear models of the SCS fail to predict known undesirable phenomena, including skipped cycles, overshoot and undershoot, produced when tracking signals in the “fast regime,” while nonlinear pulsatile control models can predict such undesirable phenomena, and (2) tools from nonlinear control theory allow us to characterize fundamental limitations in this fast regime. Using a validated and tractable nonlinear model of the SCS, we derive an analytical upper bound on frequencies that the SCS model can reliably track before producing such undesirable phenomena as a function of the neurons' biophysical constraints and muscle dynamics. The performance limitations derived here have important implications in sensorimotor control. For example, if the primary motor cortex is compromised due to disease or damage, the theory suggests ways to manipulate muscle dynamics by adding the necessary compensatory forces using an assistive neuroprosthetic device to restore motor performance and, more important, fast and agile movements. Just how one should compensate can be informed by our SCS model and the theory developed here.


Author(s):  
Hari Maghfiroh ◽  
Augustinus Sujono ◽  
Musyaffa' Ahmad ◽  
Chico Hermanu Brillianto Apribowo

<p class="Abstract"><em>One technology to support production speed is electric motors with high performance, efficiency, dynamic speed and good speed responses. DC motors are one type of electric motor which is used in the industry. Sliding Mode Control (SMC) is the robust non-linear control. The basic theory regarding SMC is presented. The SMC design which is implemented is the speed control of the DC motor is analyzed. The controller is implemented in simulation using MATLAB / Simulink environment. The step response and signal tracking test unit are carried out. The results show that SMC has a better performance compare to PID which is faster settling time and no overshoot and undershoot. </em></p><p class="Abstract"> </p>


Author(s):  
Hassan Farahan Rashag

<p>The classical Proportional- Integral (PI) control for Direct Current (DC) motor causes slow response of actual speed with high overshoot and undershoot which leads to sluggishness of the system. To minimize the problem of PI controller, intelligent technique based on hybrid neural network sliding mode control NN-SMC is suggested.  The benefits of SMC are that it is simple, and tough to parameter deviations as compared with other controllers. In this paper, the neural network NN is used to minimize the error between reference speed and actual speed. In addition, the SMC aim is to control and optimize the voltage that is supplies the DC motor which guarantees the robust performance of the speed controller under disturbances. The proposed method for the speed control is first calculated and executed to DC motor by using MATLAB SIMULINK. The results of the suggested NN-SMC are compared with the traditional PI controller. The results obviously show the supremacy of NN-SMC over PI controller.</p>


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2812
Author(s):  
Yuvaraja Teekaraman ◽  
Ramya Kuppusamy ◽  
Srete Nikolovski

Voltage and frequency regulation is one of the greatest challenges for proper operation subsequent to the isolated microgrid. To validate the satisfactory electric power quality supply to customers, the proposed manuscript tries to enhance the quality of energy provided by DG (Distributed generation) units connected to the subsequent isolated grid. Microgrid and simulation-based control structure including voltage and current control feedback loops is proposed for microgrid inverters to recover voltage and frequency of the system subsequently for any fluctuations in load change. The proportional-integral (PI) controller connected to the voltage controller is an end goal to obtain smooth response in most of the consistent frameworks. The present controller creates the space vector pulse width modulation signals which are given to the three-leg inverter. The objective elements of the multiobjective optimization issue are voltage overshoot and undershoot, rise time, settling time, and integral time absolute error (ITAE). The hybrid Multiobjective Symbiotic Organism Search (MOSOS) calculation is associated for self-tuning of control parameters keeping in mind the end goal to deal with the voltage and frequency. The proposed PI controller, along with the hybrid Multiobjective Symbiotic Organism Search algorithm, provides the solution for the greatest challenge of voltage and frequency regulation in an isolated-microgrid operation.


2018 ◽  
Author(s):  
Shreya Saxena ◽  
Sridevi V. Sarma ◽  
Munther Dahleh

The ability to move fast and accurately track moving objects is fundamentally constrained by the biophysics of neurons and dynamics of the muscles involved. Yet, the corresponding tradeoffs between these factors and tracking motor commands have not been rigorously quantified. We use feedback control principles to quantify performance limitations of the sensorimotor control system (SCS) to track fast periodic movements. We show that (i) linear models of the SCS fail to predict known undesirable phenomena, including skipped cycles, overshoot and undershoot, produced when tracking signals in the “fast regime”, while non-linear pulsatile control models can predict such undesirable phenomena, and (ii) tools from nonlinear control theory allow us to characterize fundamental limitations in this fast regime. Using a validated and tractable nonlinear model of the SCS, we derive an analytical upper bound on frequencies that the SCS model can reliably track before producing such undesirable phenomena as a function of the neurons’ biophysical constraints and muscle dynamics. The performance limitations derived here have important implications in sensorimotor control. For example, if primary motor cortex is compromised due to disease or damage, the theory suggests ways to manipulate muscle dynamics by adding the necessary compensatory forces using an assistive neuroprosthetic device to restore motor performance, and more importantly fast and agile movements. Just how one should compensate can be informed by our SCS model and the theory developed here.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750193 ◽  
Author(s):  
Xin Cheng ◽  
Hongyu Liang ◽  
Longjie Du ◽  
Zhang Zhang ◽  
Maoxiang Yi ◽  
...  

This paper proposes an output-capacitorless low-dropout (LDO) regulator with ultra-low quiescent power. It applies an adaptive error amplifier to improve the bandwidth and transient response during heavy load, and a second gain stage to improve the stability during light load. Furthermore, an overshoot and undershoot reduction circuit is used to shorten the settling time when output load is changed. The LDO is fabricated in 0.18[Formula: see text][Formula: see text]m CMOS process and occupies a chip area of 0.06[Formula: see text]mm2. The LDO is measured to output a stable voltage at 1.6[Formula: see text]V with a quiescent power of 1.8[Formula: see text][Formula: see text]W. The experimental results also show a good transient response.


Sign in / Sign up

Export Citation Format

Share Document