scholarly journals Comparison of power of modified Jarque-Bera normality tests and selected tests of normality

Author(s):  
Luboš Střelec

The aim of this paper is to modify the classical Jarque-Bera test and the robust Jarque-Bera test of normality. We use the median as an estimator instead of the mean in the classical Jarque-Bera test and in the robust Jarque-Bera test. This leads to the modified Jarque-Bera test and the modified robust Jarque-Bera test. Paper also demonstrates results of simulation studies of power of such tests with the various alternatives – light tailed alternatives as exponential, lognormal and gamma distribution, heavy tailed alternatives as Cauchy, Laplace, t3, t5 and logistic distributions and short tailed alternatives as beta and uniform distributions. These tests of normality are also used for normality testing of selected datasets of financial time series. Source data include logarithmic returns of monthly ave­ra­ge prices of Prague stock exchange index PX and monthly average prices of CZK/EUR exchange rate in the period from 2000 to 2007.

2019 ◽  
Vol 35 (6) ◽  
pp. 1234-1270 ◽  
Author(s):  
Sébastien Fries ◽  
Jean-Michel Zakoian

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.


2021 ◽  
pp. 1-47
Author(s):  
Qianqian Zhu ◽  
Guodong Li

Many financial time series have varying structures at different quantile levels, and also exhibit the phenomenon of conditional heteroskedasticity at the same time. However, there is presently no time series model that accommodates both of these features. This paper fills the gap by proposing a novel conditional heteroskedastic model called “quantile double autoregression”. The strict stationarity of the new model is derived, and self-weighted conditional quantile estimation is suggested. Two promising properties of the original double autoregressive model are shown to be preserved. Based on the quantile autocorrelation function and self-weighting concept, three portmanteau tests are constructed to check the adequacy of the fitted conditional quantiles. The finite sample performance of the proposed inferential tools is examined by simulation studies, and the need for use of the new model is further demonstrated by analyzing the S&P500 Index.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wuyang Cheng ◽  
Jun Wang

We develop a random financial time series model of stock market by one of statistical physics systems, the stochastic contact interacting system. Contact process is a continuous time Markov process; one interpretation of this model is as a model for the spread of an infection, where the epidemic spreading mimics the interplay of local infections and recovery of individuals. From this financial model, we study the statistical behaviors of return time series, and the corresponding behaviors of returns for Shanghai Stock Exchange Composite Index (SSECI) and Hang Seng Index (HSI) are also comparatively studied. Further, we investigate the Zipf distribution and multifractal phenomenon of returns and price changes. Zipf analysis and MF-DFA analysis are applied to investigate the natures of fluctuations for the stock market.


2013 ◽  
Vol 30 (3) ◽  
pp. 328-340 ◽  
Author(s):  
Robert Garthoff ◽  
Vasyl Golosnoy ◽  
Wolfgang Schmid

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Ali ◽  
Dost Muhammad Khan ◽  
Muhammad Aamir ◽  
Amjad Ali ◽  
Zubair Ahmad

Prediction of financial time series such as stock and stock indexes has remained the main focus of researchers because of its composite nature and instability in almost all of the developing and advanced countries. The main objective of this research work is to predict the direction movement of the daily stock prices index using the artificial neural network (ANN) and support vector machine (SVM). The datasets utilized in this study are the KSE-100 index of the Pakistan stock exchange, Korea composite stock price index (KOSPI), Nikkei 225 index of the Tokyo stock exchange, and Shenzhen stock exchange (SZSE) composite index for the last ten years that is from 2011 to 2020. To build the architect of a single layer ANN and SVM model with linear, radial basis function (RBF), and polynomial kernels, different technical indicators derived from the daily stock trading, such as closing, opening, daily high, and daily low prices and used as input layers. Since both the ANN and SVM models were used as classifiers; therefore, accuracy and F-score were used as performance metrics calculated from the confusion matrix. It can be concluded from the results that ANN performs better than SVM model in terms of accuracy and F-score to predict the direction movement of the KSE-100 index, KOSPI index, Nikkei 225 index, and SZSE composite index daily closing price movement.


FinTech ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 47-62
Author(s):  
Sanjib Kumar Nayak ◽  
Sarat Chandra Nayak ◽  
Subhranginee Das

Artificial neural networks (ANNs) are suitable procedures for predicting financial time series (FTS). Cryptocurrencies are good investment assets; therefore, the effective prediction of cryptocurrencies has become a trending area of research. Capturing inherent uncertainties associated with cryptocurrency FTS with conventional methods is difficult. Though ANNs are the better alternative, fixing the optimal parameters of ANNs is a tedious job. This article develops a hybrid ANN through Rao algorithm (RA + ANN) for the effective prediction of six popular cryptocurrencies such as Bitcoin, Litecoin, Ethereum, CMC 200, Tether, and Ripple. Six comparative models such as GA + ANN, PSO + ANN, MLP, SVM, LSE, and ARIMA are developed and trained in a similar way. All these models are evaluated through the mean absolute percentage of error (MAPE) and average relative variance (ARV) metrics. It is found that the proposed RA + ANN generated the lowest MAPE and ARV values, statistically different as compared with existing methods mentioned above, and hence can be recommended as a potential financial instrument for predicting cryptocurrencies.


2011 ◽  
Vol 22 (01) ◽  
pp. 35-50 ◽  
Author(s):  
CARLO PICCARDI ◽  
LISA CALATRONI ◽  
FABIO BERTONI

In this paper, we describe a method for clustering financial time series which is based on community analysis, a recently developed approach for partitioning the nodes of a network (graph). A network with N nodes is associated to the set of N time series. The weight of the link (i, j), which quantifies the similarity between the two corresponding time series, is defined according to a metric based on symbolic time series analysis, which has recently proved effective in the context of financial time series. Then, searching for network communities allows one to identify groups of nodes (and then time series) with strong similarity. A quantitative assessment of the significance of the obtained partition is also provided. The method is applied to two distinct case-studies concerning the US and Italy Stock Exchange, respectively. In the US case, the stability of the partitions over time is also thoroughly investigated. The results favorably compare with those obtained with the standard tools typically used for clustering financial time series, such as the minimal spanning tree and the hierarchical tree.


2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Katleho Makatjane ◽  
Ntebogang Moroke

During the past decades, seasonal autoregressive integrated moving average (SARIMA) had become one of a prevalent linear models in time series and forecasting. Empirical research advocated that forecasting with non-linear models can be an encouraging alternative to traditional linear models. Linear models are often compared to non-linear models with mixed conclusions in terms of superiority in forecasting performance. Therefore, the aim of this study is to build an early warning system (EWS) model for extreme daily losses for financial stock markets. A logistic model tree (LMT) is used in collaboration with a seasonal autoregressive integrated moving average-Markov-Switching exponential generalised autoregressive conditional heteroscedasticity-generalised extreme value distribution (SARIMA-MS-EGARCH-GEVD) estimates. A time series of the study is a five-day financial time series exchange/Johannesburg stock exchange-all share index (FTSE/JSE-ALSI) for the period of 4 January 2010 to 31 July 2020. The study is set into a two-stage framework. Firstly, SARIMA model is fitted to stock returns in order to obtain independently and identically distributed (i.i.d) residuals and fit the MS(k)-EGARCH(p,q)-GEVD to i.i.d residuals; while, in the second stage, we set-up an EWS model. The results of the estimated MS(2)-EGARCH(1,1) -GEVD revealed that the conditional distribution of returns is highly volatile giving the expected duration to approximately 36 months and 4 days in regime one and 58 months and 2 days in regime two. We further found that any degree losses above 25% implies that there will be no further losses. Using the seven statistical loss functions, the estimated SARIMA(2,1,0)×(2,1,0)240−MS(2)−EGARCH(1,1)−GEVD proved to be the most appropriate model for predicting extreme regimes losses as it was ranked at 71%. Finally, the results of EWS model exhibit reasonably an overall performance of 98%, sensitivity of 79.89% and specificity of 98.40% respectively. The model further indicated a success classification rate of 89% and a prediction rate of 95%. This is a promising technique for EWS. The findings also confirmed 63% and 51% of extreme losses for both training sample and validation sample to be correctly classified. The findings of this study are useful for decision makers and financial sector for future use and planning. Furthermore, a base for future researchers for conducting studies on emerging markets, have been contributed. These results are also important to risk managers and and investors.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 385-400
Author(s):  
Dr. Abed Ali Hamad ◽  
Dr. Ahmad Hussein Battal

This research aims to build a standard model for the analysis and prediction of the average daily closing price fluctuations for companies registered in the Iraq Stock Exchange for the period 07/01/2013 to 30/06/2016, using the conditional generalized Heteroscedasticity Generalized Autoregressive (GARCH) models. As these models deal with the fluctuations that occur in the financial time series. The results of the analysis showed that the best model for predicting the volatility of average closing prices in the Iraq Stock Exchange is the EGARCH model (3,1), depending on the statistical criteria used in the preference between the models (Akaike Information Criterion, Schwarz Criterion), and these models can provide information for investors in order to reduce the risk resulting from fluctuations in stock prices in the Iraqi financial market.


Sign in / Sign up

Export Citation Format

Share Document