Corrigendum: Classification of abelian complex structures on six-dimensional Lie algebras

2012 ◽  
Vol 87 (1) ◽  
pp. 319-320 ◽  
Author(s):  
A. Andrada ◽  
M. L. Barberis ◽  
I. Dotti
2019 ◽  
Vol 16 (07) ◽  
pp. 1950097
Author(s):  
Ghorbanali Haghighatdoost ◽  
Zohreh Ravanpak ◽  
Adel Rezaei-Aghdam

We study right-invariant (respectively, left-invariant) Poisson quasi-Nijenhuis structures on a Lie group [Formula: see text] and introduce their infinitesimal counterpart, the so-called r-qn structures on the corresponding Lie algebra [Formula: see text]. We investigate the procedure of the classification of such structures on the Lie algebras and then for clarity of our results we classify, up to a natural equivalence, all [Formula: see text]-[Formula: see text] structures on two types of four-dimensional real Lie algebras. We mention some remarks on the relation between [Formula: see text]-[Formula: see text] structures and the generalized complex structures on the Lie algebras [Formula: see text] and also the solutions of modified Yang–Baxter equation (MYBE) on the double of Lie bialgebra [Formula: see text]. The results are applied to some relevant examples.


2011 ◽  
Vol 83 (1) ◽  
pp. 232-255 ◽  
Author(s):  
A. Andrada ◽  
M. L. Barberis ◽  
I. Dotti

2020 ◽  
Vol 57 ◽  
pp. 25-58
Author(s):  
Marcin Sroka

We provide the classification of the six-dimensional decomposable Lie algebras, with the dimension of the biggest indecomposable summand less than five, admitting complex structures.


2016 ◽  
Vol 110 ◽  
pp. 25-29 ◽  
Author(s):  
Hamid Darabi ◽  
Farshid Saeedi ◽  
Mehdi Eshrati
Keyword(s):  

Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


2017 ◽  
Vol 190 (1) ◽  
pp. 23-51 ◽  
Author(s):  
Kenro Furutani ◽  
Irina Markina

2011 ◽  
Vol 30 (2) ◽  
pp. 247-263
Author(s):  
Edson Carlos Licurgo Santos ◽  
Luiz A. B San Martin

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Jamshidi ◽  
Farshid Saeedi ◽  
Hamid Darabi

PurposeThe purpose of this paper is to determine the structure of nilpotent (n+6)-dimensional n-Lie algebras of class 2 when n≥4.Design/methodology/approachBy dividing a nilpotent (n+6)-dimensional n-Lie algebra of class 2 by a central element, the authors arrive to a nilpotent (n+5) dimensional n-Lie algebra of class 2. Given that the authors have the structure of nilpotent (n+5)-dimensional n-Lie algebras of class 2, the authors have access to the structure of the desired algebras.FindingsIn this paper, for each n≥4, the authors have found 24 nilpotent (n+6) dimensional n-Lie algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct additions of n-Lie algebras of low-dimension and abelian n-Lie algebras.Originality/valueThis classification of n-Lie algebras provides a complete understanding of these algebras that are used in algebraic studies.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


Sign in / Sign up

Export Citation Format

Share Document