scholarly journals ROOTS OF TRIGONOMETRIC POLYNOMIALS AND THE ERDŐS–TURÁN THEOREM

Mathematika ◽  
2020 ◽  
Vol 66 (2) ◽  
pp. 245-254
Author(s):  
Stefan Steinerberger
2017 ◽  
Vol 13 (4) ◽  
pp. 106-116
Author(s):  
Alaa A. Auad ◽  
◽  
Mousa M. Khrajan

2008 ◽  
Vol 8 (2) ◽  
pp. 143-154 ◽  
Author(s):  
P. KARCZMAREK

AbstractIn this paper, Jacobi and trigonometric polynomials are used to con-struct the approximate solution of a singular integral equation with multiplicative Cauchy kernel in the half-plane.


Author(s):  
István Tomon ◽  
Dmitriy Zakharov

Abstract In this short note, we prove the following analog of the Kővári–Sós–Turán theorem for intersection graphs of boxes. If G is the intersection graph of n axis-parallel boxes in $${{\mathbb{R}}^d}$$ such that G contains no copy of K t,t , then G has at most ctn( log n)2d+3 edges, where c = c(d)>0 only depends on d. Our proof is based on exploring connections between boxicity, separation dimension and poset dimension. Using this approach, we also show that a construction of Basit, Chernikov, Starchenko, Tao and Tran of K2,2-free incidence graphs of points and rectangles in the plane can be used to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew and Rajendraprasad. We show that there exist graphs of separation dimension 4 having superlinear number of edges.


2020 ◽  
Vol 70 (3) ◽  
pp. 599-604
Author(s):  
Şahsene Altinkaya

AbstractIn this present investigation, we will concern with the family of normalized analytic error function which is defined by$$\begin{array}{} \displaystyle E_{r}f(z)=\frac{\sqrt{\pi z}}{2}\text{er} f(\sqrt{z})=z+\overset{\infty }{\underset {n=2}{\sum }}\frac{(-1)^{n-1}}{(2n-1)(n-1)!}z^{n}. \end{array}$$By making the use of the trigonometric polynomials Un(p, q, eiθ) as well as the rule of subordination, we introduce several new classes that consist of 𝔮-starlike and 𝔮-convex error functions. Afterwards, we derive some coefficient inequalities for functions in these classes.


2009 ◽  
Vol 02 (03) ◽  
pp. 425-434
Author(s):  
Tatsuhiro Honda ◽  
Mitsuhiro Miyagi ◽  
Masaru Nishihara ◽  
Seiko Ohgai ◽  
Mamoru Yoshida

We give an elementary alternative proof of the Bernstein inequalities and the Szegö inequalities for trigonometric polynomials or polynomials.


2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Nina Danelia ◽  
Vakhtang Kokilashvili

AbstractIn this paper we establish direct and inverse theorems on approximation by trigonometric polynomials for the functions of the closure of the variable exponent Lebesgue space in the variable exponent grand Lebesgue space.


Sign in / Sign up

Export Citation Format

Share Document