On the One-Skeleton of a Compact Convex Set in a Banach Space

1977 ◽  
Vol s3-34 (1) ◽  
pp. 117-144 ◽  
Author(s):  
D. G. Larman
1987 ◽  
Vol 35 (2) ◽  
pp. 267-274 ◽  
Author(s):  
J. H. M. Whitfield ◽  
V. Zizler

We show that every compact convex set in a Banach space X is an intersection of balls provided the cone generated by the set of all extreme points of the dual unit ball of X* is dense in X* in the topology of uniform convergence on compact sets in X. This allows us to renorm every Banach space with transfinite Schauder basis by a norm which shares the mentioned intersection property.


1982 ◽  
Vol 25 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Kok-Keong Tan

AbstractA closed convex subset X of a Banach space E is said to have (i) asymptotic normal structure if for each bounded closed convex subset C of X containing more than one point and for each sequence in C satisfying ‖xn − xn + 1‖ → 0 as n → ∞, there is a point x ∈ C such that ; (ii) close-to-normal structure if for each bounded closed convex subset C of X containing more than one point, there is a point x ∈ C such that ‖x − y‖ < diam‖ ‖(C) for all y ∈ C While asymptotic normal structure and close-to-normal structure are both implied by normal structure, they are not related. The example that a reflexive Banach space which has asymptotic normal structure but not close-to normal structure provides us a non-empty weakly compact convex set which does not have close-to-normal structure. This answers an open question posed by Wong in [9] and hence also provides us a Kannan map defined on a weakly compact convex set which does not have a fixed point.


1998 ◽  
Vol 41 (2) ◽  
pp. 225-230 ◽  
Author(s):  
Jon Vanderwerff

AbstractVarious authors have studied when a Banach space can be renormed so that every weakly compact convex, or less restrictively every compact convex set is an intersection of balls. We first observe that each Banach space can be renormed so that every weakly compact convex set is an intersection of balls, and then we introduce and study properties that are slightly stronger than the preceding two properties respectively.


2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


1984 ◽  
Vol 16 (02) ◽  
pp. 324-346 ◽  
Author(s):  
Wolfgang Weil ◽  
John A. Wieacker

For certain stationary random setsX, densitiesDφ(X) of additive functionalsφare defined and formulas forare derived whenKis a compact convex set in. In particular, for the quermassintegrals and motioninvariantX, these formulas are in analogy with classical integral geometric formulas. The case whereXis the union set of a Poisson processYof convex particles is considered separately. Here, formulas involving the intensity measure ofYare obtained.


1984 ◽  
Vol 16 (2) ◽  
pp. 324-346 ◽  
Author(s):  
Wolfgang Weil ◽  
John A. Wieacker

For certain stationary random sets X, densities Dφ (X) of additive functionals φ are defined and formulas for are derived when K is a compact convex set in . In particular, for the quermassintegrals and motioninvariant X, these formulas are in analogy with classical integral geometric formulas. The case where X is the union set of a Poisson process Y of convex particles is considered separately. Here, formulas involving the intensity measure of Y are obtained.


1974 ◽  
Vol 6 (03) ◽  
pp. 563-579 ◽  
Author(s):  
G. Matheron

A compact convex set in RN is Steiner if it is a finite Minkowski sum of line segments, or a limit of such finite sums, and then satisfies an extension of the Steiner formula. With each Poisson hyperplane stationary process A is uniquely associated a Steiner set M, and for any linear variety V, the Steiner set associated with is the projection of M on V. The density of the order k network Ak (i.e., the set of the intersections of k hyperplanes belonging to A) is linked with simple geometrical properties of M. In the isotropic case, the expression of the covariance measures associated with Ak is derived and compared with the analogous results obtained for (N — k)-dimensional Poisson flats.


1984 ◽  
Vol 27 (2) ◽  
pp. 233-237 ◽  
Author(s):  
H. Groemer

AbstractIn the euclidean plane let K be a compact convex set and Sl, S2,… strips of respective widths wl, w2,… Some conditions on Σ wi are given that imply that K can be covered by translates of the strips Si. These conditions involve the perimeter, the diameter, or the minimal width of K and yield improvements of previously known results.


Sign in / Sign up

Export Citation Format

Share Document