scholarly journals Bernstein–Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements

2004 ◽  
Vol 141 (01) ◽  
pp. 121-145 ◽  
Author(s):  
Uli Walther
2014 ◽  
Vol 57 (4) ◽  
pp. 697-707 ◽  
Author(s):  
Pauline Bailet

AbstractWe describe a general setting where the monodromy action on the first cohomology group of the Milnor fiber of a hyperplane arrangement is the identity.


2012 ◽  
Vol 206 ◽  
pp. 75-97 ◽  
Author(s):  
Alexandru Dimca

AbstractThe order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given.It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over ℚ, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial.We construct a hyperplane arrangement defined over ℚ, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.


2012 ◽  
Vol 206 ◽  
pp. 75-97 ◽  
Author(s):  
Alexandru Dimca

AbstractThe order of the Milnor fiber monodromy operator of a central hyperplane arrangement is shown to be combinatorially determined. In particular, a necessary and sufficient condition for the triviality of this monodromy operator is given.It is known that the complement of a complex hyperplane arrangement is cohomologically Tate and, if the arrangement is defined over ℚ, has polynomial count. We show that these properties hold for the corresponding Milnor fibers if the monodromy is trivial.We construct a hyperplane arrangement defined over ℚ, whose Milnor fiber has a nontrivial monodromy operator, is cohomologically Tate, and has no polynomial count. Such examples are shown not to exist in low dimensions.


2019 ◽  
Vol 19 (1) ◽  
pp. 89-100
Author(s):  
Matteo Gallet ◽  
Elia Saini

Abstract It is known that there exist hyperplane arrangements with the same underlying matroid that admit non-homotopy equivalent complement manifolds. Here we show that, in any rank, complex central hyperplane arrangements with up to 7 hyperplanes and the same underlying matroid are isotopic. In particular, the diffeomorphism type of the complement manifold and the Milnor fiber and fibration of these arrangements are combinatorially determined, that is, they depend only on the underlying matroid. To prove this, we associate to every such matroid a topological space, that we call the reduced realization space; its connectedness, shown by means of symbolic computation, implies the desired result.


Author(s):  
James Damon

Abstract For a germ of a variety $\mathcal{V}, 0 \subset \mathbb C^N, 0$, a singularity $\mathcal{V}_0$ of ‘type $\mathcal{V}$’ is given by a germ $f_0 : \mathbb C^n, 0 \to \mathbb C^N, 0$ which is transverse to $\mathcal{V}$ in an appropriate sense so that $\mathcal{V}_0 = f_0^{\,-1}(\mathcal{V})$. If $\mathcal{V}$ is a hypersurface germ, then so is $\mathcal{V}_0 $, and by transversality ${\operatorname{codim}}_{\mathbb C} {\operatorname{sing}}(\mathcal{V}_0) = {\operatorname{codim}}_{\mathbb C} {\operatorname{sing}}(\mathcal{V})$ provided $n > {\operatorname{codim}}_{\mathbb C} {\operatorname{sing}}(\mathcal{V})$. So $\mathcal{V}_0, 0$ will exhibit singularities of $\mathcal{V}$ up to codimension n. For singularities $\mathcal{V}_0, 0$ of type $\mathcal{V}$, we introduce a method to capture the contribution of the topology of $\mathcal{V}$ to that of $\mathcal{V}_0$. It is via the ‘characteristic cohomology’ of the Milnor fiber (for $\mathcal{V}, 0$ a hypersurface), and complement and link of $\mathcal{V}_0$ (in the general case). The characteristic cohomology of the Milnor fiber $\mathcal{A}_{\mathcal{V}}(\,f_0; R)$, and respectively of the complement $\mathcal{C}_{\mathcal{V}}(\,f_0; R)$, are subalgebras of the cohomology of the Milnor fibers, respectively the complement, with coefficients R in the corresponding cohomology. For a fixed $\mathcal{V}$, they are functorial over the category of singularities of type $\mathcal{V}$. In addition, for the link of $\mathcal{V}_0$ there is a characteristic cohomology subgroup $\mathcal{B}_{\mathcal{V}}(\,f_0, \mathbf{k})$ of the cohomology of the link over a field $\mathbf{k}$ of characteristic 0. The cohomologies $\mathcal{C}_{\mathcal{V}}(\,f_0; R)$ and $\mathcal{B}_{\mathcal{V}}(\,f_0, \mathbf{k})$ are shown to be invariant under the $\mathcal{K}_{\mathcal{V}}$-equivalence of defining germs f0, and likewise $\mathcal{A}_{\mathcal{V}}(\,f_0; R)$ is shown to be invariant under the $\mathcal{K}_{H}$-equivalence of f0 for H the defining equation of $\mathcal{V}, 0$. We give a geometric criterion involving ‘vanishing compact models’ for both the Milnor fibers and complements which detect non-vanishing subalgebras of the characteristic cohomologies, and subgroups of the characteristic cohomology of the link. Also, we consider how in the hypersurface case the cohomology of the Milnor fiber is a module over the characteristic cohomology $\mathcal{A}_{\mathcal{V}}(\,f_0; R)$. We briefly consider the application of these results to a number of cases of singularities of a given type. In part II, we specialize to the case of matrix singularities and using results on the topology of the Milnor fibers, complements and links of the varieties of singular matrices obtained in another paper allow us to give precise results for the characteristic cohomology of all three types.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050004
Author(s):  
Hery Randriamaro

The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This paper has two objectives: On the one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.


2018 ◽  
Vol 22 (6) ◽  
pp. 3395-3433 ◽  
Author(s):  
Yuki Hirano ◽  
Michael Wemyss

Sign in / Sign up

Export Citation Format

Share Document