scholarly journals Bounding the covolume of lattices in products

2019 ◽  
Vol 155 (12) ◽  
pp. 2296-2333
Author(s):  
Pierre-Emmanuel Caprace ◽  
Adrien Le Boudec

We study lattices in a product $G=G_{1}\times \cdots \times G_{n}$ of non-discrete, compactly generated, totally disconnected locally compact (tdlc) groups. We assume that each factor is quasi just-non-compact, meaning that $G_{i}$ is non-compact and every closed normal subgroup of $G_{i}$ is discrete or cocompact (e.g. $G_{i}$ is topologically simple). We show that the set of discrete subgroups of $G$ containing a fixed cocompact lattice $\unicode[STIX]{x1D6E4}$ with dense projections is finite. The same result holds if $\unicode[STIX]{x1D6E4}$ is non-uniform, provided $G$ has Kazhdan’s property (T). We show that for any compact subset $K\subset G$, the collection of discrete subgroups $\unicode[STIX]{x1D6E4}\leqslant G$ with $G=\unicode[STIX]{x1D6E4}K$ and dense projections is uniformly discrete and hence of covolume bounded away from $0$. When the ambient group $G$ is compactly presented, we show in addition that the collection of those lattices falls into finitely many $\operatorname{Aut}(G)$-orbits. As an application, we establish finiteness results for discrete groups acting on products of locally finite graphs with semiprimitive local action on each factor. We also present several intermediate results of independent interest. Notably it is shown that if a non-discrete, compactly generated quasi just-non-compact tdlc group $G$ is a Chabauty limit of discrete subgroups, then some compact open subgroup of $G$ is an infinitely generated pro-$p$ group for some prime $p$. It is also shown that in any Kazhdan group with discrete amenable radical, the lattices form an open subset of the Chabauty space of closed subgroups.

Author(s):  
NADIA S. LARSEN ◽  
RUI PALMA

AbstractThe study of existence of a universal C*-completion of the *-algebra canonically associated to a Hecke pair was initiated by Hall, who proved that the Hecke algebra associated to (SL2($\mathbb{Q}$p), SL2($\mathbb{Z}$p)) does not admit a universal C*-completion. Kaliszewski, Landstad and Quigg studied the problem by placing it in the framework of Fell–Rieffel equivalence, and highlighted the role of other C*-completions. In the case of the pair (SLn($\mathbb{Q}$p), SLn($\mathbb{Z}$p)) for n ⩾ 3 we show, invoking property (T) of SLn($\mathbb{Q}$p), that the C*-completion of the L1-Banach algebra and the corner of C*(SLn($\mathbb{Q}$p)) determined by the subgroup are distinct. In fact, we prove a more general result valid for a simple algebraic group of rank at least 2 over a $\mathfrak{p}$-adic field with a good choice of a maximal compact open subgroup.


1987 ◽  
Vol 106 ◽  
pp. 143-162 ◽  
Author(s):  
Nobuaki Obata

The infinite symmetric group is the discrete group of all finite permutations of the set X of all natural numbers. Among discrete groups, it has distinctive features from the viewpoint of representation theory and harmonic analysis. First, it is one of the most typical ICC-groups as well as free groups and known to be a group of non-type I. Secondly, it is a locally finite group, namely, the inductive limit of usual symmetric groups . Furthermore it is contained in infinite dimensional classical groups GL(ξ), O(ξ) and U(ξ) and their representation theories are related each other.


2019 ◽  
Vol 31 (3) ◽  
pp. 685-701 ◽  
Author(s):  
Colin D. Reid ◽  
Phillip R. Wesolek

Abstract Let {\phi:G\rightarrow H} be a group homomorphism such that H is a totally disconnected locally compact (t.d.l.c.) group and the image of ϕ is dense. We show that all such homomorphisms arise as completions of G with respect to uniformities of a particular kind. Moreover, H is determined up to a compact normal subgroup by the pair {(G,\phi^{-1}(L))} , where L is a compact open subgroup of H. These results generalize the well-known properties of profinite completions to the locally compact setting.


2020 ◽  
pp. 1-20
Author(s):  
RAJDIP PALIT ◽  
RIDDHI SHAH

Abstract For a locally compact group G, we study the distality of the action of automorphisms T of G on Sub G , the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on Sub G if and only if T n is the identity map for some $n\in\mathbb N$ . As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on Sub G if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on Sub G if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on Sub G . We also show that any compactly generated distal group G is Lie projective.


2015 ◽  
Vol 158 (3) ◽  
pp. 505-530 ◽  
Author(s):  
PHILLIP WESOLEK

AbstractWe study totally disconnected locally compact second countable (t.d.l.c.s.c.) groups that contain a compact open subgroup with finite rank. We show such groups that additionally admit a pro-π compact open subgroup for some finite set of primes π are virtually an extension of a finite direct product of topologically simple groups by an elementary group. This result, in particular, applies to l.c.s.c. p-adic Lie groups. We go on to obtain a decomposition result for all t.d.l.c.s.c. groups containing a compact open subgroup with finite rank. In the course of proving these theorems, we demonstrate independently interesting structure results for t.d.l.c.s.c. groups with a compact open pro-nilpotent subgroup and for topologically simple l.c.s.c. p-adic Lie groups.


Sign in / Sign up

Export Citation Format

Share Document