A bimodule description of the Hecke category

2021 ◽  
Vol 157 (10) ◽  
pp. 2133-2159
Author(s):  
Noriyuki Abe

Abstract For a Coxeter system and a representation $V$ of this Coxeter system, Soergel defined a category which is now called the category of Soergel bimodules and proved that this gives a categorification of the Hecke algebra when $V$ is reflection faithful. Elias and Williamson defined another category when $V$ is not reflection faithful and proved that this category is equivalent to the category of Soergel bimodules when $V$ is reflection faithful. Moreover, they proved the categorification theorem for their category with fewer assumptions on $V$ . In this paper, we give a bimodule description of the Elias–Williamson category and re-prove the categorification theorem.

2010 ◽  
Vol 2010 ◽  
pp. 1-47 ◽  
Author(s):  
Ben Elias

The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group. In the case of the symmetric group, morphisms in this category can be drawn as graphs in the plane. We define a quotient category, also given in terms of planar graphs, which categorifies the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1-skeleton of the Coxeter complex and to the topology of 2D cobordisms. We demonstrate how further subquotients of this category will categorify the irreducible modules of the Temperley-Lieb algebra.


2001 ◽  
Vol 64 (3) ◽  
pp. 487-493 ◽  
Author(s):  
Gus I. Lehrer ◽  
Nanhua Xi

We show that the well known homomorphism from any Artin braid group to the Hecke algebra of the same type is injective for the universal coxeter system and that the Burau representation is faithful for all finite coxeter systems of rank two.


Author(s):  
Ben Elias ◽  
Mikhail Khovanov

The monoidal category of Soergel bimodules can be thought of as a categorification of the Hecke algebra of a finite Weyl group. We present this category, when the Weyl group is the symmetric group, in the language of planar diagrams with local generators and local defining relations.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter considers the notion of parallel residues in a building. It begins with the assumption that Δ‎ is a building of type Π‎, which is arbitrary except in a few places where it is explicitly assumed to be spherical. Δ‎ is not assumed to be thick. The chapter then elaborates on a hypothesis which states that S is the vertex set of Π‎, (W, S) is the corresponding Coxeter system, d is the W-distance function on the set of ordered pairs of chambers of Δ‎, and ℓ is the length function on (W, S). It also presents a notation in which the type of a residue R is denoted by Typ(R) and concludes with the condition that residues R and T of a building will be called parallel if R = projR(T) and T = projT(R).


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter introduces the notion of a Tits index and the notion of the relative Coxeter diagram of a Tits index. It first defines a Tits index, which can be anisotropic or isotropic, quasi-split or split, before considering a number of propositions regarding compatible representations. It then gives a proof of the theorem that includes two assumptions about a Coxeter system, focusing on the absolute Coxeter system, the relative Coxeter system, and the relative Coxeter group of the Tits index, as well as the absolute Coxeter diagram (or absolute type), the relative Coxeter diagram (or relative type), and the absolute rank and the relative rank of the Tits index. The chapter concludes with some observations about the case that (W, S) is spherical, irreducible or affine.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Charles F. Dunkl

In a preceding paper the theory of nonsymmetric Macdonald polynomials taking values in modules of the Hecke algebra of type A (Dunkl and Luque SLC 2012) was applied to such modules consisting of polynomials in anti-commuting variables, to define nonsymmetric Macdonald superpolynomials. These polynomials depend on two parameters q,t and are defined by means of a Yang–Baxter graph. The present paper determines the values of a subclass of the polynomials at the special points 1,t,t2,… or 1,t−1,t−2,…. The arguments use induction on the degree and computations with products of generators of the Hecke algebra. The resulting formulas involve q,t-hook products. Evaluations are also found for Macdonald superpolynomials having restricted symmetry and antisymmetry properties.


2005 ◽  
Vol 04 (06) ◽  
pp. 631-644
Author(s):  
KENICHI SHINODA ◽  
ILKNUR TULUNAY
Keyword(s):  

In this article, we explicitly calculated the values of the representations of the Hecke algebra [Formula: see text], associated with a Gelfand–Graev character of GL 4(q), at some of the standard basis elements.


2000 ◽  
Vol 233 (2) ◽  
pp. 594-613 ◽  
Author(s):  
Ron M. Adin ◽  
Alexander Postnikov ◽  
Yuval Roichman

Sign in / Sign up

Export Citation Format

Share Document