scholarly journals Hecke Algebra Actions on the Coinvariant Algebra

2000 ◽  
Vol 233 (2) ◽  
pp. 594-613 ◽  
Author(s):  
Ron M. Adin ◽  
Alexander Postnikov ◽  
Yuval Roichman
2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index. En étudiant l'action de l'algèbre de 0-Hecke sur l'algèbre coinvariante et la variété de drapeaux complète, nous interprétons les fonctions génératrices qui comptent les permutations avec un ensemble inverse de descentes fixé, selon leur nombre d'inversions et leur "major index''.


10.37236/6970 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Brendon Rhoades ◽  
Andrew Timothy Wilson

Let $n,k,$ and $r$ be nonnegative integers and let $S_n$ be the symmetric group. We introduce a quotient $R_{n,k,r}$ of the polynomial ring $\mathbb{Q}[x_1, \dots, x_n]$ in $n$ variables which carries the structure of a graded $S_n$-module.  When $r \ge n$ or $k = 0$ the quotient $R_{n,k,r}$ reduces to the classical coinvariant algebra $R_n$ attached to the symmetric group. Just as algebraic properties of $R_n$ are controlled by combinatorial properties of permutations in $S_n$, the algebra of $R_{n,k,r}$ is controlled by the combinatorics of objects called tail positive words. We calculate the standard monomial basis of $R_{n,k,r}$ and its graded $S_n$-isomorphism type. We also view $R_{n,k,r}$ as a module over the 0-Hecke algebra $H_n(0)$, prove that $R_{n,k,r}$ is a projective 0-Hecke module, and calculate its quasisymmetric and nonsymmetric 0-Hecke characteristics. We conjecture a relationship between our quotient $R_{n,k,r}$ and the delta operators of the theory of Macdonald polynomials.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Charles F. Dunkl

In a preceding paper the theory of nonsymmetric Macdonald polynomials taking values in modules of the Hecke algebra of type A (Dunkl and Luque SLC 2012) was applied to such modules consisting of polynomials in anti-commuting variables, to define nonsymmetric Macdonald superpolynomials. These polynomials depend on two parameters q,t and are defined by means of a Yang–Baxter graph. The present paper determines the values of a subclass of the polynomials at the special points 1,t,t2,… or 1,t−1,t−2,…. The arguments use induction on the degree and computations with products of generators of the Hecke algebra. The resulting formulas involve q,t-hook products. Evaluations are also found for Macdonald superpolynomials having restricted symmetry and antisymmetry properties.


1995 ◽  
Vol 177 (1) ◽  
pp. 164-185 ◽  
Author(s):  
S Ariki

2005 ◽  
Vol 04 (06) ◽  
pp. 631-644
Author(s):  
KENICHI SHINODA ◽  
ILKNUR TULUNAY
Keyword(s):  

In this article, we explicitly calculated the values of the representations of the Hecke algebra [Formula: see text], associated with a Gelfand–Graev character of GL 4(q), at some of the standard basis elements.


1991 ◽  
Vol 360 (2-3) ◽  
pp. 613-640 ◽  
Author(s):  
Nir Sochen

1993 ◽  
Vol 61 (204) ◽  
pp. 889 ◽  
Author(s):  
Meinolf Geck

Author(s):  
Takehiro Hasegawa ◽  
Hayato Saigo ◽  
Seiken Saito ◽  
Shingo Sugiyama

The subject of the present paper is an application of quantum probability to [Formula: see text]-adic objects. We give a quantum-probabilistic interpretation of the spherical Hecke algebra for [Formula: see text], where [Formula: see text] is a [Formula: see text]-adic field. As a byproduct, we obtain a new proof of the Fourier inversion formula for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document