WEAKLY COMPACT HOMOMORPHISMS BETWEEN SMALL ALGEBRAS OF ANALYTIC FUNCTIONS

2001 ◽  
Vol 33 (6) ◽  
pp. 715-726 ◽  
Author(s):  
PABLO GALINDO ◽  
MIKAEL LINDSTRÖM

The weak compactness of the composition operator CΦ(f) = f ○ Φ acting on the uniform algebra of analytic uniformly continuous functions on the unit ball of a Banach space with the approximation property is characterized in terms of Φ. The relationship between weak compactness and compactness of these composition operators and general homomorphisms is also discussed.


1999 ◽  
Vol 42 (2) ◽  
pp. 139-148 ◽  
Author(s):  
José Bonet ◽  
Paweł Dománski ◽  
Mikael Lindström

AbstractEvery weakly compact composition operator between weighted Banach spaces of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.



1980 ◽  
Vol 29 (4) ◽  
pp. 399-406
Author(s):  
Peter Dierolf ◽  
Jürgen Voigt

AbstractWe prove a result on compactness properties of Fréchet-derivatives which implies that the Fréchet-derivative of a weakly compact map between Banach spaces is weakly compact. This result is applied to characterize certain weakly compact composition operators on Sobolev spaces which have application in the theory of nonlinear integral equations and in the calculus of variations.



2015 ◽  
Vol 62 (1) ◽  
pp. 1-12
Author(s):  
José A. Guerrero ◽  
Nelson Merentes ◽  
José L. Sánchez

Abstract In this paper we present the concept of total κ-variation in the sense of Hardy-Vitali-Korenblum for a real function defined in the rectangle Iab⊂R2. We show that the space κBV(Iab, R) of real functions of two variables with finite total κ-variation is a Banach space endowed with the norm ||f||κ = |f (a)| + κTV( f, Iab). Also, we characterize the Nemytskij composition operator H that maps the space of functions of two real variables of bounded κ-variation κBV(Iab, R) into another space of a similar type and is uniformly bounded (or Lipschitzian or uniformly continuous).





Author(s):  
Yuriy Linchuk

AbstractThe commutant of composition operator induced by a parabolic linear fractional transformation of the unit disk onto itself in the class of linear continuous operators acting on the space of analytic functions is described.



1989 ◽  
Vol 39 (3) ◽  
pp. 353-359 ◽  
Author(s):  
José Aguayo ◽  
José Sánchez

Let X be a completely regular space. We denote by Cb(X) the Banach space of all real-valued bounded continuous functions on X endowed with the supremum-norm.In this paper we prove some characterisations of weakly compact operators defined from Cb(X) into a Banach space E which are continuous with respect to fit, βt, βr and βσ introduced by Sentilles.We also prove that (Cb,(X), βi), i = t, τσ , has the Dunford-Pettis property.



2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Marian Nowak

LetXbe a completely regular Hausdorff space and letE,·Eand(F,·F)be Banach spaces. LetCb(X,E)be the space of allE-valued bounded, continuous functions onX, equipped with the strict topologyβσ. We study the relationship between important classes of(βσ,·F)-continuous linear operatorsT:Cb(X,E)→F(strongly bounded, unconditionally converging, weakly completely continuous, completely continuous, weakly compact, nuclear, and strictly singular) and the corresponding operator measures given by Riesz representing theorems. Some applications concerning the coincidence among these classes of operators are derived.



2007 ◽  
Vol 5 (2) ◽  
pp. 103-122 ◽  
Author(s):  
Marko Kotilainen

Letp≥1,q>-2and letK:[0,∞)→[0,∞)be nondecreasing. With a different choice ofp,q,K, the Banach spaceQK(p,q)coincides with many well-known analytic function spaces. Boundedness and compactness of the composition operatorCφfromα-Bloch spaceBαintoQK(p,q)are characterized by a condition depending only on analytic mappingφ:𝔻→𝔻. The same properties are also studied in the caseCφ:QK(p,q)→Bα.



2017 ◽  
Vol 27 (06) ◽  
pp. 1750084 ◽  
Author(s):  
Zongbin Yin

In this paper, the chaotic dynamics of composition operators on the space of real-valued continuous functions is investigated. It is proved that the hypercyclicity, topologically mixing property, Devaney chaos, frequent hypercyclicity and the specification property of the composition operator are equivalent to each other and are stronger than dense distributional chaos. Moreover, the composition operator [Formula: see text] exhibits dense Li–Yorke chaos if and only if it is densely distributionally chaotic, if and only if the symbol [Formula: see text] admits no fixed points. Finally, the long-time behaviors of the composition operator with affine symbol are classified in detail.



Sign in / Sign up

Export Citation Format

Share Document