scholarly journals RESTRICTIONS OF ALGEBRAIC GROUP REPRESENTATIONS TO FINITE SUBGROUPS

2002 ◽  
Vol 34 (2) ◽  
pp. 165-173
Author(s):  
HARM DERKSEN

Suppose that H is a finite subgroup of a linear algebraic group, G. It was proved by Donkin that there exists a finite-dimensional rational representation of G whose restriction to H is free. This paper gives a short proof of this in characteristic 0. The author also studies more closely which representations of H can appear as a restriction of G.

Author(s):  
LUCAS FRESSE ◽  
IVAN PENKOV

AbstractLet G be one of the ind-groups GL(∞), O(∞), Sp(∞), and let P1, ..., Pℓ be an arbitrary set of ℓ splitting parabolic subgroups of G. We determine all such sets with the property that G acts with finitely many orbits on the ind-variety X1 × × Xℓ where Xi = G/Pi. In the case of a finite-dimensional classical linear algebraic group G, the analogous problem has been solved in a sequence of papers of Littelmann, Magyar–Weyman–Zelevinsky and Matsuki. An essential difference from the finite-dimensional case is that already for ℓ = 2, the condition that G acts on X1 × X2 with finitely many orbits is a rather restrictive condition on the pair P1, P2. We describe this condition explicitly. Using the description we tackle the most interesting case where ℓ = 3, and present the answer in the form of a table. For ℓ ≥ 4 there always are infinitely many G-orbits on X1 × × Xℓ.


Author(s):  
G. I. Lehrer ◽  
T. Shoji

AbstractLet G be a connected reductive linear algebraic group over the complex numbers. For any element A of the Lie algebra of G, there is an action of the Weyl group W on the cohomology Hi(BA) of the subvariety BA (see below for the definition) of the flag variety of G. We study this action and prove an inequality for the multiplicity of the Weyl group representations which occur ((4.8) below). This involves geometric data. This inequality is applied to determine the multiplicity of the reflection representation of W when A is a nilpotent element of “parabolic type”. In particular this multiplicity is related to the geometry of the corresponding hyperplane complement.


1985 ◽  
Vol 98 ◽  
pp. 139-156 ◽  
Author(s):  
Yasuo Teranishi

Let G be a connected linear algebraic group, p a rational representation of G on a finite-dimensional vector space V, all defined over C.


1979 ◽  
Vol 27 (3) ◽  
pp. 378-384 ◽  
Author(s):  
David B. Surowski

AbstractLet g be a connected reductive linear algebraic group, and let G = gσ be the finite subgroup of fixed points, where σ is the generalized Frobenius endomorphism of g. Let x be a regular semisimple element of G and let w be a corresponding element of the Weyl group W. In this paper we give a formula for the number of right cosets of a parabolic subgroup of G left fixed by x, in terms of the corresponding action of w in W. In case G is untwisted, it turns out thta x fixes exactly as many cosets as does W in the corresponding permutation representation.


1977 ◽  
Vol 65 ◽  
pp. 1-155 ◽  
Author(s):  
M. Sato ◽  
T. Kimura

LetGbe a connected linear algebraic group, andpa rational representation ofGon a finite-dimensional vector spaceV, all defined over the complex number fieldC.We call such a triplet (G, p, V) aprehomogeneous vector spaceifVhas a Zariski-denseG-orbit. The main purpose of this paper is to classify all prehomogeneous vector spaces whenpis irreducible, and to investigate their relative invariants and the regularity.


1985 ◽  
Vol 99 ◽  
pp. 131-146 ◽  
Author(s):  
Yasuo Teranishi

Let (G, ρ, V) be a triple of a linear algebraic group G and a rational representation ρ on a finite dimensional vector space V, all defined over the complex number field C.


Author(s):  
Indranil Biswas ◽  
Georg Schumacher

AbstractLet G be a simple linear algebraic group defined over an algebraically closed field k of characteristic p ≥ 0, and let P be a maximal proper parabolic subgroup of G. If p > 0, then we will assume that dimG/P ≤ p. Let ι : H ↪ G/P be a reduced smooth hypersurface in G/P of degree d. We will assume that the pullback homomorphism is an isomorphism (this assumption is automatically satisfied when dimH ≥ 3). We prove that the tangent bundle of H is stable if the two conditions τ(G/P) ≠ d and hold; here n = dimH, and τ(G/P) ∈ is the index of G/P which is defined by the identity = where L is the ample generator of Pic(G/P) and is the anti–canonical line bundle of G/P. If d = τ(G/P), then the tangent bundle TH is proved to be semistable. If p > 0, and then TH is strongly stable. If p > 0, and d = τ(G/P), then TH is strongly semistable.


2010 ◽  
Vol 53 (2) ◽  
pp. 218-222
Author(s):  
Indranil Biswas

AbstractLet P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over ℂ, such that n := dimℂG/P ≥ 4. Let ι : Z ↪ G/P be a reduced smooth hypersurface of degree at least (n – 1) · degree(T(G/P))/n. We prove that the restriction of the tangent bundle ι*TG/P is semistable.


Sign in / Sign up

Export Citation Format

Share Document